
Expand the following determinant:
$| {\begin{array}{*{20}{c}}
1&{ - 3}&4
3&5&{ - 3}
2&{ - 5}&0
\end{array}} \right| $
Answer
610.8k+ views
\[
{\text{Let }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ be a general determinant }} \\
{\text{As we know that }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ is expanded as,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ }} \\
{\text{This can be reduced as,}} \\
\Rightarrow a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ = }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ }} \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = {\text{ }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ (1)}} \\
{\text{Now we know we have to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} \\
{\text{So, to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ first we have to compare its elements with the elements of }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }}. \\
{\text{So on comparing we get }}a = 1,b = - 3,c = 4,d = 3,e = 5,f = - 3,g = 2,h = - 5{\text{ and }}i = 0 \\
{\text{Now putting values of }}a,b,c,d,e,f,g,h{\text{ and }}i{\text{ in equation 3 we get,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = {\text{ }}1\left( {5*0 - ( - 5)*( - 3)} \right) + 3\left( {3*0 - 2*( - 3)} \right) + 4\left( {3*( - 5) - 2*5} \right) \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ = }} - 15 + 18 - 100 = - 97 \\
{\text{Hence }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = - 97{\text{ }} \\
{\text{NOTE: - Whenever you came up to expand a determinant then better way is to expand using cofactors}}{\text{.}} \\
{\text{While expanding calculations should be carefully done}}{\text{.}} \\
\]
{\text{Let }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ be a general determinant }} \\
{\text{As we know that }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ is expanded as,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ }} \\
{\text{This can be reduced as,}} \\
\Rightarrow a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ = }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ }} \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = {\text{ }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ (1)}} \\
{\text{Now we know we have to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} \\
{\text{So, to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ first we have to compare its elements with the elements of }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }}. \\
{\text{So on comparing we get }}a = 1,b = - 3,c = 4,d = 3,e = 5,f = - 3,g = 2,h = - 5{\text{ and }}i = 0 \\
{\text{Now putting values of }}a,b,c,d,e,f,g,h{\text{ and }}i{\text{ in equation 3 we get,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = {\text{ }}1\left( {5*0 - ( - 5)*( - 3)} \right) + 3\left( {3*0 - 2*( - 3)} \right) + 4\left( {3*( - 5) - 2*5} \right) \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ = }} - 15 + 18 - 100 = - 97 \\
{\text{Hence }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = - 97{\text{ }} \\
{\text{NOTE: - Whenever you came up to expand a determinant then better way is to expand using cofactors}}{\text{.}} \\
{\text{While expanding calculations should be carefully done}}{\text{.}} \\
\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

