
Expand the following determinant:
$| {\begin{array}{*{20}{c}}
1&{ - 3}&4
3&5&{ - 3}
2&{ - 5}&0
\end{array}} \right| $
Answer
609.3k+ views
\[
{\text{Let }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ be a general determinant }} \\
{\text{As we know that }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ is expanded as,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ }} \\
{\text{This can be reduced as,}} \\
\Rightarrow a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ = }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ }} \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = {\text{ }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ (1)}} \\
{\text{Now we know we have to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} \\
{\text{So, to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ first we have to compare its elements with the elements of }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }}. \\
{\text{So on comparing we get }}a = 1,b = - 3,c = 4,d = 3,e = 5,f = - 3,g = 2,h = - 5{\text{ and }}i = 0 \\
{\text{Now putting values of }}a,b,c,d,e,f,g,h{\text{ and }}i{\text{ in equation 3 we get,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = {\text{ }}1\left( {5*0 - ( - 5)*( - 3)} \right) + 3\left( {3*0 - 2*( - 3)} \right) + 4\left( {3*( - 5) - 2*5} \right) \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ = }} - 15 + 18 - 100 = - 97 \\
{\text{Hence }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = - 97{\text{ }} \\
{\text{NOTE: - Whenever you came up to expand a determinant then better way is to expand using cofactors}}{\text{.}} \\
{\text{While expanding calculations should be carefully done}}{\text{.}} \\
\]
{\text{Let }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ be a general determinant }} \\
{\text{As we know that }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ is expanded as,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ }} \\
{\text{This can be reduced as,}} \\
\Rightarrow a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|{\text{ = }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ }} \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }} = {\text{ }}a\left( {ei - hf} \right) - b\left( {di - gf} \right) + c\left( {dh - ge} \right){\text{ (1)}} \\
{\text{Now we know we have to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} \\
{\text{So, to expand }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ first we have to compare its elements with the elements of }}\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|{\text{ }}. \\
{\text{So on comparing we get }}a = 1,b = - 3,c = 4,d = 3,e = 5,f = - 3,g = 2,h = - 5{\text{ and }}i = 0 \\
{\text{Now putting values of }}a,b,c,d,e,f,g,h{\text{ and }}i{\text{ in equation 3 we get,}} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = {\text{ }}1\left( {5*0 - ( - 5)*( - 3)} \right) + 3\left( {3*0 - 2*( - 3)} \right) + 4\left( {3*( - 5) - 2*5} \right) \\
\Rightarrow {\text{So, }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ = }} - 15 + 18 - 100 = - 97 \\
{\text{Hence }}\left| {\begin{array}{*{20}{c}}
1&{ - 3}&4 \\
3&5&{ - 3} \\
2&{ - 5}&0
\end{array}} \right|{\text{ }} = - 97{\text{ }} \\
{\text{NOTE: - Whenever you came up to expand a determinant then better way is to expand using cofactors}}{\text{.}} \\
{\text{While expanding calculations should be carefully done}}{\text{.}} \\
\]
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

