
How do you expand the binomial \[{{\left( 2x-{{y}^{3}} \right)}^{7}}\]?
Answer
547.8k+ views
Hint: From the given question we have to expand the binomial \[{{\left( 2x-{{y}^{3}} \right)}^{7}}\]. To expand this, we have to use binomial theorem i.e., the expansion of \[{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}.\left( {{a}^{n-k}}{{b}^{k}} \right)}\]. Here we have to substitute 2x in place of \[a\] and \[-{{y}^{3}}\] in place of b. By using this binomial equation formula and after the simplification according to the formula we can expand the above binomial \[{{\left( 2x-{{y}^{3}} \right)}^{7}}\].
Complete step by step solution:
From the given question we have to expand the binomial
As we know that we have to expand this by using binomial theorem. Binomial theorem helps in expanding the algebraic expansion of powers of a binomial into simplified form. According to the theorem, we can expand any polynomial \[{{\left( a+b \right)}^{n}}\] into a sum involving terms of the form \[c{{a}^{x}}{{b}^{y}}\].
Here the exponents x and y are nonnegative integers which obey the condition \[x+y=n\]. The coefficient c in the term of \[c{{a}^{x}}{{b}^{y}}\] is known as the binomial coefficient.
Now, by using binomial theorem formula we have to expand the binomial \[{{\left( 2x-{{y}^{3}} \right)}^{7}}\] as follows.
\[\Rightarrow {{\left( 2x-{{y}^{3}} \right)}^{7}}={{\sum\limits_{k=0}^{7}{\dfrac{7!}{\left( 7-k \right)!k!}.\left( 2x \right)}}^{7-k}}.{{\left( -{{y}^{3}} \right)}^{k}}\]
Now, we have to expand the above summation. So, the equation will be simplified as follows.
\[\begin{align}
& \Rightarrow {{\left( 2x-{{y}^{3}} \right)}^{7}}=\dfrac{7!}{\left( 7-0 \right)!0!}.{{\left( 2x \right)}^{7-0}}.{{\left( -{{y}^{3}} \right)}^{0}}+\dfrac{7!}{\left( 7-1 \right)!1!}.{{\left( 2x \right)}^{7-1}}.{{\left( -{{y}^{3}} \right)}^{1}}+\dfrac{7!}{\left( 7-2 \right)!2!}.{{\left( 2x \right)}^{7-2}}.{{\left( -{{y}^{3}} \right)}^{2}} \\
& +\dfrac{7!}{\left( 7-3 \right)!3!}.{{\left( 2x \right)}^{7-3}}.{{\left( -{{y}^{3}} \right)}^{3}}+\dfrac{7!}{\left( 7-4 \right)!4!}.{{\left( 2x \right)}^{7-4}}.{{\left( -{{y}^{3}} \right)}^{4}}+\dfrac{7!}{\left( 7-5 \right)!5!}.{{\left( 2x \right)}^{7-5}}.{{\left( -{{y}^{3}} \right)}^{5}} \\
& +\dfrac{7!}{\left( 7-6 \right)!6!}.{{\left( 2x \right)}^{7-6}}.{{\left( -{{y}^{3}} \right)}^{6}}+\dfrac{7!}{\left( 7-7 \right)!7!}.{{\left( 2x \right)}^{7-7}}.{{\left( -{{y}^{3}} \right)}^{7}} \\
\end{align}\]
Now, we have to simplify the above form.
\[\begin{align}
& \Rightarrow {{\left( 2x-{{y}^{3}} \right)}^{7}}=\left( 1.{{\left( -{{y}^{3}} \right)}^{0}}.{{\left( 2x \right)}^{7}} \right)+\left( 7.{{\left( -{{y}^{3}} \right)}^{1}}.{{\left( 2x \right)}^{6}} \right)+\left( 21.{{\left( -{{y}^{3}} \right)}^{2}}.{{\left( 2x \right)}^{5}} \right)+\left( 35.{{\left( -{{y}^{3}} \right)}^{3}}.{{\left( 2x \right)}^{4}} \right) \\
& +\left( 35.{{\left( -{{y}^{3}} \right)}^{4}}.{{\left( 2x \right)}^{3}} \right)+\left( 21.{{\left( -{{y}^{3}} \right)}^{5}}.{{\left( 2x \right)}^{2}} \right)+\left( 7.{{\left( -{{y}^{3}} \right)}^{6}}.{{\left( 2x \right)}^{1}} \right)+\left( 1.{{\left( -{{y}^{3}} \right)}^{7}}.{{\left( 2x \right)}^{0}} \right) \\
\end{align}\]
After the simplification the above binomial expression we get,
\[\Rightarrow {{\left( 2x-{{y}^{3}} \right)}^{7}}=128{{x}^{7}}-448{{x}^{6}}{{y}^{3}}+672{{x}^{5}}{{y}^{6}}-560{{x}^{4}}{{y}^{9}}+280{{x}^{3}}{{y}^{12}}-84{{x}^{2}}{{y}^{15}}+14x{{y}^{18}}-{{y}^{21}}\]
Therefore, for the given question the solution will be \[{{\left( 2x-{{y}^{3}} \right)}^{7}}=128{{x}^{7}}-448{{x}^{6}}{{y}^{3}}+672{{x}^{5}}{{y}^{6}}-560{{x}^{4}}{{y}^{9}}+280{{x}^{3}}{{y}^{12}}-84{{x}^{2}}{{y}^{15}}+14x{{y}^{18}}-{{y}^{21}}\].
Note: Students should know the expansions and binomial theorem. Student should be careful with signs and calculation. Students must have good knowledge in binomial theorems formula for example \[{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}.\left( {{a}^{n-k}}{{b}^{k}} \right)}\].
Students must be very careful in simplifying the question using the binomial formula we should not do mistake like, for example in this \[ {{\left( 2x-{{y}^{3}} \right)}^{7}}={{\sum\limits_{k=0}^{7}{\dfrac{7!}{\left( 7-k \right)!k!}.\left( 2x \right)}}^{7-k}}.{{\left( -{{y}^{3}} \right)}^{k}}\] if we write formula as \[{{\left( 2x \right)}^{k-7}}\] instead of \[{{\left( 2x \right)}^{7-k}}\] our whole simplification makes our solution a wrong one.
Complete step by step solution:
From the given question we have to expand the binomial
As we know that we have to expand this by using binomial theorem. Binomial theorem helps in expanding the algebraic expansion of powers of a binomial into simplified form. According to the theorem, we can expand any polynomial \[{{\left( a+b \right)}^{n}}\] into a sum involving terms of the form \[c{{a}^{x}}{{b}^{y}}\].
Here the exponents x and y are nonnegative integers which obey the condition \[x+y=n\]. The coefficient c in the term of \[c{{a}^{x}}{{b}^{y}}\] is known as the binomial coefficient.
Now, by using binomial theorem formula we have to expand the binomial \[{{\left( 2x-{{y}^{3}} \right)}^{7}}\] as follows.
\[\Rightarrow {{\left( 2x-{{y}^{3}} \right)}^{7}}={{\sum\limits_{k=0}^{7}{\dfrac{7!}{\left( 7-k \right)!k!}.\left( 2x \right)}}^{7-k}}.{{\left( -{{y}^{3}} \right)}^{k}}\]
Now, we have to expand the above summation. So, the equation will be simplified as follows.
\[\begin{align}
& \Rightarrow {{\left( 2x-{{y}^{3}} \right)}^{7}}=\dfrac{7!}{\left( 7-0 \right)!0!}.{{\left( 2x \right)}^{7-0}}.{{\left( -{{y}^{3}} \right)}^{0}}+\dfrac{7!}{\left( 7-1 \right)!1!}.{{\left( 2x \right)}^{7-1}}.{{\left( -{{y}^{3}} \right)}^{1}}+\dfrac{7!}{\left( 7-2 \right)!2!}.{{\left( 2x \right)}^{7-2}}.{{\left( -{{y}^{3}} \right)}^{2}} \\
& +\dfrac{7!}{\left( 7-3 \right)!3!}.{{\left( 2x \right)}^{7-3}}.{{\left( -{{y}^{3}} \right)}^{3}}+\dfrac{7!}{\left( 7-4 \right)!4!}.{{\left( 2x \right)}^{7-4}}.{{\left( -{{y}^{3}} \right)}^{4}}+\dfrac{7!}{\left( 7-5 \right)!5!}.{{\left( 2x \right)}^{7-5}}.{{\left( -{{y}^{3}} \right)}^{5}} \\
& +\dfrac{7!}{\left( 7-6 \right)!6!}.{{\left( 2x \right)}^{7-6}}.{{\left( -{{y}^{3}} \right)}^{6}}+\dfrac{7!}{\left( 7-7 \right)!7!}.{{\left( 2x \right)}^{7-7}}.{{\left( -{{y}^{3}} \right)}^{7}} \\
\end{align}\]
Now, we have to simplify the above form.
\[\begin{align}
& \Rightarrow {{\left( 2x-{{y}^{3}} \right)}^{7}}=\left( 1.{{\left( -{{y}^{3}} \right)}^{0}}.{{\left( 2x \right)}^{7}} \right)+\left( 7.{{\left( -{{y}^{3}} \right)}^{1}}.{{\left( 2x \right)}^{6}} \right)+\left( 21.{{\left( -{{y}^{3}} \right)}^{2}}.{{\left( 2x \right)}^{5}} \right)+\left( 35.{{\left( -{{y}^{3}} \right)}^{3}}.{{\left( 2x \right)}^{4}} \right) \\
& +\left( 35.{{\left( -{{y}^{3}} \right)}^{4}}.{{\left( 2x \right)}^{3}} \right)+\left( 21.{{\left( -{{y}^{3}} \right)}^{5}}.{{\left( 2x \right)}^{2}} \right)+\left( 7.{{\left( -{{y}^{3}} \right)}^{6}}.{{\left( 2x \right)}^{1}} \right)+\left( 1.{{\left( -{{y}^{3}} \right)}^{7}}.{{\left( 2x \right)}^{0}} \right) \\
\end{align}\]
After the simplification the above binomial expression we get,
\[\Rightarrow {{\left( 2x-{{y}^{3}} \right)}^{7}}=128{{x}^{7}}-448{{x}^{6}}{{y}^{3}}+672{{x}^{5}}{{y}^{6}}-560{{x}^{4}}{{y}^{9}}+280{{x}^{3}}{{y}^{12}}-84{{x}^{2}}{{y}^{15}}+14x{{y}^{18}}-{{y}^{21}}\]
Therefore, for the given question the solution will be \[{{\left( 2x-{{y}^{3}} \right)}^{7}}=128{{x}^{7}}-448{{x}^{6}}{{y}^{3}}+672{{x}^{5}}{{y}^{6}}-560{{x}^{4}}{{y}^{9}}+280{{x}^{3}}{{y}^{12}}-84{{x}^{2}}{{y}^{15}}+14x{{y}^{18}}-{{y}^{21}}\].
Note: Students should know the expansions and binomial theorem. Student should be careful with signs and calculation. Students must have good knowledge in binomial theorems formula for example \[{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^{n}{{C}_{k}}.\left( {{a}^{n-k}}{{b}^{k}} \right)}\].
Students must be very careful in simplifying the question using the binomial formula we should not do mistake like, for example in this \[ {{\left( 2x-{{y}^{3}} \right)}^{7}}={{\sum\limits_{k=0}^{7}{\dfrac{7!}{\left( 7-k \right)!k!}.\left( 2x \right)}}^{7-k}}.{{\left( -{{y}^{3}} \right)}^{k}}\] if we write formula as \[{{\left( 2x \right)}^{k-7}}\] instead of \[{{\left( 2x \right)}^{7-k}}\] our whole simplification makes our solution a wrong one.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

