
Exact value of $\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ $ is:
(A) $1$
(B) $\dfrac{1}{{\sqrt 2 }}$
(C) $\sqrt 2 $
(D) zero
Answer
582k+ views
Hint: Firstly, find the value of $2{\sin ^2}55^\circ $ using the formula $2{\sin ^2}\theta = 1 - \cos 2\theta $ and then break the $\sin 65^\circ $ into $\sin \left( {45 + 20} \right)$ to expand it using the formula $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$.
Complete step-by-step answer:
Given, $\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ $
Using formula $2{\sin ^2}\theta = 1 - \cos 2\theta $ to find the value of $2{\sin ^2}55^\circ $,
$ \Rightarrow $$\cos 20^\circ + \left[ {1 - \cos \left( {2 \times 55^\circ } \right)} \right] - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 - \cos 110^\circ - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 - \cos \left( {90 + 20} \right) - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 - \left( { - \sin 20^\circ } \right) - \sqrt 2 \sin 65^\circ $ $\left[ {\because \cos \left( {90 + \theta } \right) = - \sin \theta } \right]$
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \sin \left( {45 + 20} \right)$ $\left( {\because 65 = 45 + 20} \right)$
Using $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ to find the value of $\sin \left( {45 + 20} \right)$,
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \left( {\sin 45^\circ \cos 20^\circ + \cos 45^\circ \sin 20^\circ } \right)$
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \sin 45^\circ \cos 20^\circ - \sqrt 2 \cos 45^\circ \sin 20^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \times \dfrac{1}{{\sqrt 2 }} \times \cos 20^\circ - \sqrt 2 \times \dfrac{1}{{\sqrt 2 }} \times \sin 20^\circ $ $\left( {\because \sin 45^\circ = \cos 45^\circ = \dfrac{1}{{\sqrt 2 }}} \right)$
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \cos 20^\circ - \sin 20^\circ $
$ \Rightarrow $$1$
Therefore, $\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ $=$1$
Hence, option (A) is the correct answer.
Note: An another approach to solve this question is described below:
Given, $\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ $
Using formula $2{\sin ^2}\theta = 1 - \cos 2\theta $ to find the value of $2{\sin ^2}55^\circ $,
$ \Rightarrow $$\cos 20^\circ + \left[ {1 - \cos \left( {2 \times 55^\circ } \right)} \right] - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 - \cos 110^\circ - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ - \cos 110^\circ + 1 - \sqrt 2 \sin 65^\circ $
Using formula $\cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right)$ to find the value of $\cos 20^\circ - \cos 110^\circ $,
$ \Rightarrow $$\left[ {2\sin \left( {\dfrac{{20 + 110}}{2}} \right)\sin \left( {\dfrac{{110 - 20}}{2}} \right)} \right] + 1 - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$2\sin 65^\circ \sin 45^\circ + 1 - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$2\sin 65^\circ \times \dfrac{1}{{\sqrt 2 }} + 1 - \sqrt 2 \sin 65^\circ $ $\left( {\because \sin 45^\circ = \dfrac{1}{{\sqrt 2 }}} \right)$
$ \Rightarrow $$\sqrt 2 \sin 65^\circ + 1 - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$1$
Therefore, $\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ $=$1$
Hence, option (A) is the correct answer.
Complete step-by-step answer:
Given, $\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ $
Using formula $2{\sin ^2}\theta = 1 - \cos 2\theta $ to find the value of $2{\sin ^2}55^\circ $,
$ \Rightarrow $$\cos 20^\circ + \left[ {1 - \cos \left( {2 \times 55^\circ } \right)} \right] - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 - \cos 110^\circ - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 - \cos \left( {90 + 20} \right) - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 - \left( { - \sin 20^\circ } \right) - \sqrt 2 \sin 65^\circ $ $\left[ {\because \cos \left( {90 + \theta } \right) = - \sin \theta } \right]$
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \sin \left( {45 + 20} \right)$ $\left( {\because 65 = 45 + 20} \right)$
Using $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ to find the value of $\sin \left( {45 + 20} \right)$,
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \left( {\sin 45^\circ \cos 20^\circ + \cos 45^\circ \sin 20^\circ } \right)$
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \sin 45^\circ \cos 20^\circ - \sqrt 2 \cos 45^\circ \sin 20^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \sqrt 2 \times \dfrac{1}{{\sqrt 2 }} \times \cos 20^\circ - \sqrt 2 \times \dfrac{1}{{\sqrt 2 }} \times \sin 20^\circ $ $\left( {\because \sin 45^\circ = \cos 45^\circ = \dfrac{1}{{\sqrt 2 }}} \right)$
$ \Rightarrow $$\cos 20^\circ + 1 + \sin 20^\circ - \cos 20^\circ - \sin 20^\circ $
$ \Rightarrow $$1$
Therefore, $\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ $=$1$
Hence, option (A) is the correct answer.
Note: An another approach to solve this question is described below:
Given, $\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ $
Using formula $2{\sin ^2}\theta = 1 - \cos 2\theta $ to find the value of $2{\sin ^2}55^\circ $,
$ \Rightarrow $$\cos 20^\circ + \left[ {1 - \cos \left( {2 \times 55^\circ } \right)} \right] - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ + 1 - \cos 110^\circ - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$\cos 20^\circ - \cos 110^\circ + 1 - \sqrt 2 \sin 65^\circ $
Using formula $\cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right)$ to find the value of $\cos 20^\circ - \cos 110^\circ $,
$ \Rightarrow $$\left[ {2\sin \left( {\dfrac{{20 + 110}}{2}} \right)\sin \left( {\dfrac{{110 - 20}}{2}} \right)} \right] + 1 - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$2\sin 65^\circ \sin 45^\circ + 1 - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$2\sin 65^\circ \times \dfrac{1}{{\sqrt 2 }} + 1 - \sqrt 2 \sin 65^\circ $ $\left( {\because \sin 45^\circ = \dfrac{1}{{\sqrt 2 }}} \right)$
$ \Rightarrow $$\sqrt 2 \sin 65^\circ + 1 - \sqrt 2 \sin 65^\circ $
$ \Rightarrow $$1$
Therefore, $\cos 20^\circ + 2{\sin ^2}55^\circ - \sqrt 2 \sin 65^\circ $=$1$
Hence, option (A) is the correct answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

