
Events A, B, C are mutually exclusive events such that \[P\left( A \right) = \dfrac{{3x + 1}}{3}\] , \[P\left( B \right) = \dfrac{{1 - x}}{4}\] and \[P\left( C \right) = \dfrac{{1 - 2x}}{2}\] . Then the set of possible values of x are in the interval.
\[
A.{\text{ }}\left[ {\dfrac{1}{3},\dfrac{2}{3}} \right] \\
B.{\text{ }}\left[ {\dfrac{1}{3},\dfrac{{13}}{3}} \right] \\
C.{\text{ }}\left[ {0,1} \right] \\
D.{\text{ }}\left[ {\dfrac{1}{3},\dfrac{1}{2}} \right] \\
\]
Answer
587.7k+ views
Hint:In order to solve the given problem we will use the concept that the probability of any event lies between 0 and 1. With the use of this concept on all the given probabilities we will get 3 inequality. Further we will find the union of all the three events A, B and C and by the use of formula for mutually exclusive events and the above concept we will find fourth inequality. Further we will find the intersection of each of the inequality we will find the final interval of x.
Complete step-by-step answer:
Given that the probability of three events are:
\[
P\left( A \right) = \dfrac{{3x + 1}}{3} \\
P\left( B \right) = \dfrac{{1 - x}}{4} \\
P\left( C \right) = \dfrac{{1 - 2x}}{2} \\
\]
We have to find the interval of x.
As we know that the probability of the event lies between 0 and 1.
This can be represented as:
\[0 \leqslant P\left( x \right) \leqslant 1\]
So let us use this theorem for each probability one by one.
For the given event A, we have:
\[0 \leqslant P\left( A \right) \leqslant 1\]
Let us now substitute the value given:
\[0 \leqslant \left[ {P\left( A \right) = \dfrac{{3x + 1}}{3}} \right] \leqslant 1\]
Let us simplify further to find the interval of x.
\[
\Rightarrow 0 \leqslant \dfrac{{3x + 1}}{3} \leqslant 1 \\
\Rightarrow 0 \leqslant 3x + 1 \leqslant 3 \\
\Rightarrow - 1 \leqslant 3x \leqslant 2 \\
\Rightarrow \dfrac{{ - 1}}{3} \leqslant x \leqslant \dfrac{2}{3} \\
\]
So we have the inequality as:
\[ \Rightarrow \dfrac{{ - 1}}{3} \leqslant x \leqslant \dfrac{2}{3}............(1)\]
Similarly for the given event B, we have:
\[0 \leqslant P\left( B \right) \leqslant 1\]
Let us now substitute the value given:
\[0 \leqslant \left[ {P\left( B \right) = \dfrac{{1 - x}}{4}} \right] \leqslant 1\]
Let us simplify further to find the interval of x.
\[
\Rightarrow 0 \leqslant \dfrac{{1 - x}}{4} \leqslant 1 \\
\Rightarrow 0 \leqslant 1 - x \leqslant 4 \\
\Rightarrow - 4 \leqslant x - 1 \leqslant 0 \\
\Rightarrow - 3 \leqslant x \leqslant 1 \\
\]
So we have the inequality as:
\[ \Rightarrow - 3 \leqslant x \leqslant 1............(2)\]
Also for the given event C, we have:
\[0 \leqslant P\left( C \right) \leqslant 1\]
Let us now substitute the value given:
\[0 \leqslant \left[ {P\left( C \right) = \dfrac{{1 - 2x}}{2}} \right] \leqslant 1\]
Let us simplify further to find the interval of x.
\[
\Rightarrow 0 \leqslant \dfrac{{1 - 2x}}{2} \leqslant 1 \\
\Rightarrow 0 \leqslant 1 - 2x \leqslant 2 \\
\Rightarrow - 2 \leqslant 2x - 1 \leqslant 0 \\
\Rightarrow - 1 \leqslant 2x \leqslant 1 \\
\Rightarrow \dfrac{{ - 1}}{2} \leqslant x \leqslant \dfrac{1}{2} \\
\]
So we have the inequality as:
\[ \Rightarrow \dfrac{{ - 1}}{2} \leqslant x \leqslant \dfrac{1}{2}............(3)\]
We have got the three inequalities from the above three equations which represents the interval of x.
Now let us proceed to find the probability of the union of three mutually exclusive events.
Union of three events is represented as:
\[P\left( {A \cup B \cup C} \right)\]
Using the above theorem we have:
For the given union of events A, B and C we have:
\[0 \leqslant P\left( {A \cup B \cup C} \right) \leqslant 1\]
As we know that union of the events can be further simplified as:
\[P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {B \cap C} \right) - P\left( {C \cap A} \right) + P\left( {A \cap B \cap C} \right)\]
As the events A, B and C are mutually exclusive so the probability of intersection of any of these events is 0. So, we have:
\[P\left( {A \cap B} \right) = P\left( {B \cap C} \right) = P\left( {C \cap A} \right) = P\left( {A \cap B \cap C} \right) = 0\]
So, the union of the events becomes:
\[
P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - 0 - 0 - 0 + 0 \\
P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) \\
\]
Hence our inequality becomes:
\[
\because 0 \leqslant P\left( {A \cup B \cup C} \right) \leqslant 1 \\
\Rightarrow 0 \leqslant P\left( A \right) + P\left( B \right) + P\left( C \right) \leqslant 1 \\
\]
Let us now substitute the value given:
\[
\because 0 \leqslant P\left( A \right) + P\left( B \right) + P\left( C \right) \leqslant 1 \\
\Rightarrow 0 \leqslant \dfrac{{3x + 1}}{3} + \dfrac{{1 - x}}{4} + \dfrac{{1 - 2x}}{2} \leqslant 1 \\
\Rightarrow 0 \leqslant \dfrac{{13 - 3x}}{{12}} \leqslant 1 \\
\]
Let us simplify further to find the interval of x.
\[
\Rightarrow 0 \leqslant \dfrac{{13 - 3x}}{{12}} \leqslant 1 \\
\Rightarrow 0 \leqslant 13 - 3x \leqslant 12 \\
\Rightarrow - 12 \leqslant 3x - 13 \leqslant 0 \\
\Rightarrow 1 \leqslant 3x \leqslant 13 \\
\Rightarrow \dfrac{1}{3} \leqslant x \leqslant \dfrac{{13}}{3} \\
\]
So we have the inequality as:
\[ \Rightarrow \dfrac{1}{3} \leqslant x \leqslant \dfrac{{13}}{3}............(4)\]
So finally we have four equations of inequality.
\[
\Rightarrow \dfrac{{ - 1}}{3} \leqslant x \leqslant \dfrac{2}{3}............(1) \\
\Rightarrow - 3 \leqslant x \leqslant 1............(2) \\
\Rightarrow \dfrac{{ - 1}}{2} \leqslant x \leqslant \dfrac{1}{2}............(3) \\
\Rightarrow \dfrac{1}{3} \leqslant x \leqslant \dfrac{{13}}{3}............(4) \\
\]
Let us find the intersection of these four inequalities.
Comparing all the inequality of x and taking the intersection or common of each of the inequality, we get:
\[ \Rightarrow \dfrac{1}{3} \leqslant x \leqslant \dfrac{1}{2}\]
Hence, the set of possible values of x are in the interval \[\dfrac{1}{3} \leqslant x \leqslant \dfrac{1}{2}\]
So, the correct answer is option D
Note:In order to solve such problems related to finding the interval of some variables first we need to find out different inequality equations that can be formed by the help of given problem statements and other information. Further students must remember how to find the common interval. We don't take the minimum and maximum to find the interval, rather we take the least possible interval within different inequality which is found to be common between all the inequalities.
Complete step-by-step answer:
Given that the probability of three events are:
\[
P\left( A \right) = \dfrac{{3x + 1}}{3} \\
P\left( B \right) = \dfrac{{1 - x}}{4} \\
P\left( C \right) = \dfrac{{1 - 2x}}{2} \\
\]
We have to find the interval of x.
As we know that the probability of the event lies between 0 and 1.
This can be represented as:
\[0 \leqslant P\left( x \right) \leqslant 1\]
So let us use this theorem for each probability one by one.
For the given event A, we have:
\[0 \leqslant P\left( A \right) \leqslant 1\]
Let us now substitute the value given:
\[0 \leqslant \left[ {P\left( A \right) = \dfrac{{3x + 1}}{3}} \right] \leqslant 1\]
Let us simplify further to find the interval of x.
\[
\Rightarrow 0 \leqslant \dfrac{{3x + 1}}{3} \leqslant 1 \\
\Rightarrow 0 \leqslant 3x + 1 \leqslant 3 \\
\Rightarrow - 1 \leqslant 3x \leqslant 2 \\
\Rightarrow \dfrac{{ - 1}}{3} \leqslant x \leqslant \dfrac{2}{3} \\
\]
So we have the inequality as:
\[ \Rightarrow \dfrac{{ - 1}}{3} \leqslant x \leqslant \dfrac{2}{3}............(1)\]
Similarly for the given event B, we have:
\[0 \leqslant P\left( B \right) \leqslant 1\]
Let us now substitute the value given:
\[0 \leqslant \left[ {P\left( B \right) = \dfrac{{1 - x}}{4}} \right] \leqslant 1\]
Let us simplify further to find the interval of x.
\[
\Rightarrow 0 \leqslant \dfrac{{1 - x}}{4} \leqslant 1 \\
\Rightarrow 0 \leqslant 1 - x \leqslant 4 \\
\Rightarrow - 4 \leqslant x - 1 \leqslant 0 \\
\Rightarrow - 3 \leqslant x \leqslant 1 \\
\]
So we have the inequality as:
\[ \Rightarrow - 3 \leqslant x \leqslant 1............(2)\]
Also for the given event C, we have:
\[0 \leqslant P\left( C \right) \leqslant 1\]
Let us now substitute the value given:
\[0 \leqslant \left[ {P\left( C \right) = \dfrac{{1 - 2x}}{2}} \right] \leqslant 1\]
Let us simplify further to find the interval of x.
\[
\Rightarrow 0 \leqslant \dfrac{{1 - 2x}}{2} \leqslant 1 \\
\Rightarrow 0 \leqslant 1 - 2x \leqslant 2 \\
\Rightarrow - 2 \leqslant 2x - 1 \leqslant 0 \\
\Rightarrow - 1 \leqslant 2x \leqslant 1 \\
\Rightarrow \dfrac{{ - 1}}{2} \leqslant x \leqslant \dfrac{1}{2} \\
\]
So we have the inequality as:
\[ \Rightarrow \dfrac{{ - 1}}{2} \leqslant x \leqslant \dfrac{1}{2}............(3)\]
We have got the three inequalities from the above three equations which represents the interval of x.
Now let us proceed to find the probability of the union of three mutually exclusive events.
Union of three events is represented as:
\[P\left( {A \cup B \cup C} \right)\]
Using the above theorem we have:
For the given union of events A, B and C we have:
\[0 \leqslant P\left( {A \cup B \cup C} \right) \leqslant 1\]
As we know that union of the events can be further simplified as:
\[P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {B \cap C} \right) - P\left( {C \cap A} \right) + P\left( {A \cap B \cap C} \right)\]
As the events A, B and C are mutually exclusive so the probability of intersection of any of these events is 0. So, we have:
\[P\left( {A \cap B} \right) = P\left( {B \cap C} \right) = P\left( {C \cap A} \right) = P\left( {A \cap B \cap C} \right) = 0\]
So, the union of the events becomes:
\[
P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - 0 - 0 - 0 + 0 \\
P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) \\
\]
Hence our inequality becomes:
\[
\because 0 \leqslant P\left( {A \cup B \cup C} \right) \leqslant 1 \\
\Rightarrow 0 \leqslant P\left( A \right) + P\left( B \right) + P\left( C \right) \leqslant 1 \\
\]
Let us now substitute the value given:
\[
\because 0 \leqslant P\left( A \right) + P\left( B \right) + P\left( C \right) \leqslant 1 \\
\Rightarrow 0 \leqslant \dfrac{{3x + 1}}{3} + \dfrac{{1 - x}}{4} + \dfrac{{1 - 2x}}{2} \leqslant 1 \\
\Rightarrow 0 \leqslant \dfrac{{13 - 3x}}{{12}} \leqslant 1 \\
\]
Let us simplify further to find the interval of x.
\[
\Rightarrow 0 \leqslant \dfrac{{13 - 3x}}{{12}} \leqslant 1 \\
\Rightarrow 0 \leqslant 13 - 3x \leqslant 12 \\
\Rightarrow - 12 \leqslant 3x - 13 \leqslant 0 \\
\Rightarrow 1 \leqslant 3x \leqslant 13 \\
\Rightarrow \dfrac{1}{3} \leqslant x \leqslant \dfrac{{13}}{3} \\
\]
So we have the inequality as:
\[ \Rightarrow \dfrac{1}{3} \leqslant x \leqslant \dfrac{{13}}{3}............(4)\]
So finally we have four equations of inequality.
\[
\Rightarrow \dfrac{{ - 1}}{3} \leqslant x \leqslant \dfrac{2}{3}............(1) \\
\Rightarrow - 3 \leqslant x \leqslant 1............(2) \\
\Rightarrow \dfrac{{ - 1}}{2} \leqslant x \leqslant \dfrac{1}{2}............(3) \\
\Rightarrow \dfrac{1}{3} \leqslant x \leqslant \dfrac{{13}}{3}............(4) \\
\]
Let us find the intersection of these four inequalities.
Comparing all the inequality of x and taking the intersection or common of each of the inequality, we get:
\[ \Rightarrow \dfrac{1}{3} \leqslant x \leqslant \dfrac{1}{2}\]
Hence, the set of possible values of x are in the interval \[\dfrac{1}{3} \leqslant x \leqslant \dfrac{1}{2}\]
So, the correct answer is option D
Note:In order to solve such problems related to finding the interval of some variables first we need to find out different inequality equations that can be formed by the help of given problem statements and other information. Further students must remember how to find the common interval. We don't take the minimum and maximum to find the interval, rather we take the least possible interval within different inequality which is found to be common between all the inequalities.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

