
Evaluate:$\dfrac{\sec {{29}^{\circ }}}{\cos ec{{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\cot {{45}^{\circ }}\cot {{73}^{\circ }}\cot {{82}^{\circ }}-3\left( {{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }} \right)$.
Answer
521.4k+ views
Hint: We solve the whole equation using the
sin (90° - θ) = cos θ
cos (90° - θ) = sin θ.
tan (90° - θ) = cot θ.
cosec (90° - θ) = sec θ.
sec (90° - θ) = cosec θ.
cot (90° - θ) = tan θ.
The above all properties help us in solving the question.
Complete step-by-step answer:
$\dfrac{\sec {{29}^{\circ }}}{\cos ec{{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\cot {{45}^{\circ }}\cot {{73}^{\circ }}\cot {{82}^{\circ }}-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
So, now we eliminate the variables whose value is easily evaluated. In this part $\cot 45{}^\circ =1$, so we put 1 in the place of cot and then our expression reduces to:
$\dfrac{\sec {{29}^{\circ }}}{\operatorname{co}\sec {{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Now rewriting cosec term: cosec (90° - θ) = sec θ
$\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Again, rewriting the cot term: cot (90° - θ) = tan θ.
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot (90-17){}^\circ \cot (90-8){}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting cot θ to tan θ we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\tan 17{}^\circ \tan 8{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Now, cancelling the cot and tan terms as they are reciprocal trigonometric identities we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Cancelling sec θ in the first part we get,
\[1+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting sine terms: sin (90° - θ) = cos θ
$\begin{align}
& 3-3({{\sin }^{2}}38{}^\circ +{{\sin }^{2}}(90-52){}^\circ \\
& 3-3({{\sin }^{2}}38{}^\circ +{{\cos }^{2}}38{}^\circ ) \\
\end{align}$
Now, using the identity of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we can reduce the last term as,
$\begin{align}
& 3-3(1) \\
& 3-3=0 \\
\end{align}$
So, the final value obtained after performing a series of operations is 0.
Therefore, the answer obtained is 0.
Note: The key step is to rewrite all the variables so that each gets cancelled out using its counterpart and hence we get a final simple numerical evaluation.
All the trigonometric identities must be remembered to solve the question.
sin (90° - θ) = cos θ
cos (90° - θ) = sin θ.
tan (90° - θ) = cot θ.
cosec (90° - θ) = sec θ.
sec (90° - θ) = cosec θ.
cot (90° - θ) = tan θ.
The above all properties help us in solving the question.
Complete step-by-step answer:
$\dfrac{\sec {{29}^{\circ }}}{\cos ec{{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\cot {{45}^{\circ }}\cot {{73}^{\circ }}\cot {{82}^{\circ }}-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
So, now we eliminate the variables whose value is easily evaluated. In this part $\cot 45{}^\circ =1$, so we put 1 in the place of cot and then our expression reduces to:
$\dfrac{\sec {{29}^{\circ }}}{\operatorname{co}\sec {{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Now rewriting cosec term: cosec (90° - θ) = sec θ
$\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Again, rewriting the cot term: cot (90° - θ) = tan θ.
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot (90-17){}^\circ \cot (90-8){}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting cot θ to tan θ we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\tan 17{}^\circ \tan 8{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Now, cancelling the cot and tan terms as they are reciprocal trigonometric identities we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Cancelling sec θ in the first part we get,
\[1+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting sine terms: sin (90° - θ) = cos θ
$\begin{align}
& 3-3({{\sin }^{2}}38{}^\circ +{{\sin }^{2}}(90-52){}^\circ \\
& 3-3({{\sin }^{2}}38{}^\circ +{{\cos }^{2}}38{}^\circ ) \\
\end{align}$
Now, using the identity of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we can reduce the last term as,
$\begin{align}
& 3-3(1) \\
& 3-3=0 \\
\end{align}$
So, the final value obtained after performing a series of operations is 0.
Therefore, the answer obtained is 0.
Note: The key step is to rewrite all the variables so that each gets cancelled out using its counterpart and hence we get a final simple numerical evaluation.
All the trigonometric identities must be remembered to solve the question.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
