
Evaluate:$\dfrac{\sec {{29}^{\circ }}}{\cos ec{{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\cot {{45}^{\circ }}\cot {{73}^{\circ }}\cot {{82}^{\circ }}-3\left( {{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }} \right)$.
Answer
604.5k+ views
Hint: We solve the whole equation using the
sin (90° - θ) = cos θ
cos (90° - θ) = sin θ.
tan (90° - θ) = cot θ.
cosec (90° - θ) = sec θ.
sec (90° - θ) = cosec θ.
cot (90° - θ) = tan θ.
The above all properties help us in solving the question.
Complete step-by-step answer:
$\dfrac{\sec {{29}^{\circ }}}{\cos ec{{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\cot {{45}^{\circ }}\cot {{73}^{\circ }}\cot {{82}^{\circ }}-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
So, now we eliminate the variables whose value is easily evaluated. In this part $\cot 45{}^\circ =1$, so we put 1 in the place of cot and then our expression reduces to:
$\dfrac{\sec {{29}^{\circ }}}{\operatorname{co}\sec {{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Now rewriting cosec term: cosec (90° - θ) = sec θ
$\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Again, rewriting the cot term: cot (90° - θ) = tan θ.
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot (90-17){}^\circ \cot (90-8){}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting cot θ to tan θ we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\tan 17{}^\circ \tan 8{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Now, cancelling the cot and tan terms as they are reciprocal trigonometric identities we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Cancelling sec θ in the first part we get,
\[1+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting sine terms: sin (90° - θ) = cos θ
$\begin{align}
& 3-3({{\sin }^{2}}38{}^\circ +{{\sin }^{2}}(90-52){}^\circ \\
& 3-3({{\sin }^{2}}38{}^\circ +{{\cos }^{2}}38{}^\circ ) \\
\end{align}$
Now, using the identity of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we can reduce the last term as,
$\begin{align}
& 3-3(1) \\
& 3-3=0 \\
\end{align}$
So, the final value obtained after performing a series of operations is 0.
Therefore, the answer obtained is 0.
Note: The key step is to rewrite all the variables so that each gets cancelled out using its counterpart and hence we get a final simple numerical evaluation.
All the trigonometric identities must be remembered to solve the question.
sin (90° - θ) = cos θ
cos (90° - θ) = sin θ.
tan (90° - θ) = cot θ.
cosec (90° - θ) = sec θ.
sec (90° - θ) = cosec θ.
cot (90° - θ) = tan θ.
The above all properties help us in solving the question.
Complete step-by-step answer:
$\dfrac{\sec {{29}^{\circ }}}{\cos ec{{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\cot {{45}^{\circ }}\cot {{73}^{\circ }}\cot {{82}^{\circ }}-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
So, now we eliminate the variables whose value is easily evaluated. In this part $\cot 45{}^\circ =1$, so we put 1 in the place of cot and then our expression reduces to:
$\dfrac{\sec {{29}^{\circ }}}{\operatorname{co}\sec {{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Now rewriting cosec term: cosec (90° - θ) = sec θ
$\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Again, rewriting the cot term: cot (90° - θ) = tan θ.
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot (90-17){}^\circ \cot (90-8){}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting cot θ to tan θ we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\tan 17{}^\circ \tan 8{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Now, cancelling the cot and tan terms as they are reciprocal trigonometric identities we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Cancelling sec θ in the first part we get,
\[1+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting sine terms: sin (90° - θ) = cos θ
$\begin{align}
& 3-3({{\sin }^{2}}38{}^\circ +{{\sin }^{2}}(90-52){}^\circ \\
& 3-3({{\sin }^{2}}38{}^\circ +{{\cos }^{2}}38{}^\circ ) \\
\end{align}$
Now, using the identity of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we can reduce the last term as,
$\begin{align}
& 3-3(1) \\
& 3-3=0 \\
\end{align}$
So, the final value obtained after performing a series of operations is 0.
Therefore, the answer obtained is 0.
Note: The key step is to rewrite all the variables so that each gets cancelled out using its counterpart and hence we get a final simple numerical evaluation.
All the trigonometric identities must be remembered to solve the question.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

