
Evaluate:$\dfrac{\sec {{29}^{\circ }}}{\cos ec{{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\cot {{45}^{\circ }}\cot {{73}^{\circ }}\cot {{82}^{\circ }}-3\left( {{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }} \right)$.
Answer
618.3k+ views
Hint: We solve the whole equation using the
sin (90° - θ) = cos θ
cos (90° - θ) = sin θ.
tan (90° - θ) = cot θ.
cosec (90° - θ) = sec θ.
sec (90° - θ) = cosec θ.
cot (90° - θ) = tan θ.
The above all properties help us in solving the question.
Complete step-by-step answer:
$\dfrac{\sec {{29}^{\circ }}}{\cos ec{{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\cot {{45}^{\circ }}\cot {{73}^{\circ }}\cot {{82}^{\circ }}-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
So, now we eliminate the variables whose value is easily evaluated. In this part $\cot 45{}^\circ =1$, so we put 1 in the place of cot and then our expression reduces to:
$\dfrac{\sec {{29}^{\circ }}}{\operatorname{co}\sec {{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Now rewriting cosec term: cosec (90° - θ) = sec θ
$\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Again, rewriting the cot term: cot (90° - θ) = tan θ.
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot (90-17){}^\circ \cot (90-8){}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting cot θ to tan θ we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\tan 17{}^\circ \tan 8{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Now, cancelling the cot and tan terms as they are reciprocal trigonometric identities we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Cancelling sec θ in the first part we get,
\[1+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting sine terms: sin (90° - θ) = cos θ
$\begin{align}
& 3-3({{\sin }^{2}}38{}^\circ +{{\sin }^{2}}(90-52){}^\circ \\
& 3-3({{\sin }^{2}}38{}^\circ +{{\cos }^{2}}38{}^\circ ) \\
\end{align}$
Now, using the identity of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we can reduce the last term as,
$\begin{align}
& 3-3(1) \\
& 3-3=0 \\
\end{align}$
So, the final value obtained after performing a series of operations is 0.
Therefore, the answer obtained is 0.
Note: The key step is to rewrite all the variables so that each gets cancelled out using its counterpart and hence we get a final simple numerical evaluation.
All the trigonometric identities must be remembered to solve the question.
sin (90° - θ) = cos θ
cos (90° - θ) = sin θ.
tan (90° - θ) = cot θ.
cosec (90° - θ) = sec θ.
sec (90° - θ) = cosec θ.
cot (90° - θ) = tan θ.
The above all properties help us in solving the question.
Complete step-by-step answer:
$\dfrac{\sec {{29}^{\circ }}}{\cos ec{{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\cot {{45}^{\circ }}\cot {{73}^{\circ }}\cot {{82}^{\circ }}-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
So, now we eliminate the variables whose value is easily evaluated. In this part $\cot 45{}^\circ =1$, so we put 1 in the place of cot and then our expression reduces to:
$\dfrac{\sec {{29}^{\circ }}}{\operatorname{co}\sec {{61}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Now rewriting cosec term: cosec (90° - θ) = sec θ
$\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot 73{}^\circ \cot 82{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})$
Again, rewriting the cot term: cot (90° - θ) = tan θ.
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\cot (90-17){}^\circ \cot (90-8){}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting cot θ to tan θ we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2\cot {{8}^{\circ }}\cot {{17}^{\circ }}\left( 1 \right)\tan 17{}^\circ \tan 8{}^\circ -3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Now, cancelling the cot and tan terms as they are reciprocal trigonometric identities we get,
\[\dfrac{\sec {{29}^{\circ }}}{\sec {{29}^{\circ }}}+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Cancelling sec θ in the first part we get,
\[1+2-3({{\sin }^{2}}{{38}^{\circ }}+{{\sin }^{2}}{{52}^{\circ }})\]
Converting sine terms: sin (90° - θ) = cos θ
$\begin{align}
& 3-3({{\sin }^{2}}38{}^\circ +{{\sin }^{2}}(90-52){}^\circ \\
& 3-3({{\sin }^{2}}38{}^\circ +{{\cos }^{2}}38{}^\circ ) \\
\end{align}$
Now, using the identity of ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we can reduce the last term as,
$\begin{align}
& 3-3(1) \\
& 3-3=0 \\
\end{align}$
So, the final value obtained after performing a series of operations is 0.
Therefore, the answer obtained is 0.
Note: The key step is to rewrite all the variables so that each gets cancelled out using its counterpart and hence we get a final simple numerical evaluation.
All the trigonometric identities must be remembered to solve the question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

