
Evaluate the value of the matrix: \[\Delta =\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|\].
Answer
613.5k+ views
Hint: Use the fact that the value of a $3\times 3$ determinant of the form $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|$ is $a\left( ei-fh \right)-b\left( di-gf \right)+c(dh-eg)$. Substitute the value of the variables by comparing it with the given matrix. Simplify the value of the matrix using the trigonometric identity ${{\cos }^{2}}x+{{\sin }^{2}}x=1$.
Step-by-step answer:
We have to calculate the value of the matrix \[\Delta =\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|\]. We observe that this matrix has 3 rows and 3columns. Thus, it is a $3\times 3$ matrix.
We will now calculate the value of the given matrix using the fact that the value of the matrix of the form $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|$ is $a\left( ei-fh \right)-b\left( di-gf \right)+c(dh-eg)$.
We will now substitute the values $a=\cos \alpha \cos \beta ,b=\cos \alpha \sin \beta ,c=-\sin \alpha $, $d=-\sin \beta ,e=\cos \beta ,f=0$ and $g=\sin \alpha \cos \beta ,h=\sin \alpha \sin \beta ,i=\cos \alpha $ in each row of the matrix.
Thus, we have $\Delta =\cos \alpha \cos \beta \left( \cos \alpha \cos \beta -0\left( \cos \alpha \cos \beta \right) \right)-\cos \alpha \sin \beta \left( -\cos \alpha \sin \beta -0\left( \sin \alpha {{\cos }^{2}}\beta \right) \right)-\sin \alpha \left( -\sin \alpha {{\sin }^{2}}\beta -\sin \alpha {{\cos }^{2}}\beta \right)$.
Simplifying the above expression, we have $\Delta ={{\cos }^{2}}\alpha {{\cos }^{2}}\beta +{{\cos }^{2}}\alpha {{\sin }^{2}}\beta +{{\sin }^{2}}\alpha {{\sin }^{2}}\beta +{{\sin }^{2}}\alpha {{\cos }^{2}}\beta $.
Rearranging the terms of the above equation, we have $\Delta ={{\cos }^{2}}\alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right)+{{\sin }^{2}}\alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right)$.
We know the trigonometric identity ${{\cos }^{2}}x+{{\sin }^{2}}x=1$.
Thus, we have $\Delta ={{\cos }^{2}}\alpha \left( 1 \right)+{{\sin }^{2}}\alpha \left( 1 \right)={{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha $.
So, we have $\Delta ={{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha =1$.
Hence, the value of the matrix \[\Delta =\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|\] is 1.
Note: We can expand the matrix along any row or column. However, in each case, the value of the matrix remains the same. A matrix is a rectangular array of numbers, symbols, or expressions arranged in rows and columns. The dimension of a matrix is written as the product of the number of rows and columns. Two matrices can be added or subtracted element by element if they have the same dimension.
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|$ is $a\left( ei-fh \right)-b\left( di-gf \right)+c(dh-eg)$. Substitute the value of the variables by comparing it with the given matrix. Simplify the value of the matrix using the trigonometric identity ${{\cos }^{2}}x+{{\sin }^{2}}x=1$.
Step-by-step answer:
We have to calculate the value of the matrix \[\Delta =\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|\]. We observe that this matrix has 3 rows and 3columns. Thus, it is a $3\times 3$ matrix.
We will now calculate the value of the given matrix using the fact that the value of the matrix of the form $\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|$ is $a\left( ei-fh \right)-b\left( di-gf \right)+c(dh-eg)$.
We will now substitute the values $a=\cos \alpha \cos \beta ,b=\cos \alpha \sin \beta ,c=-\sin \alpha $, $d=-\sin \beta ,e=\cos \beta ,f=0$ and $g=\sin \alpha \cos \beta ,h=\sin \alpha \sin \beta ,i=\cos \alpha $ in each row of the matrix.
Thus, we have $\Delta =\cos \alpha \cos \beta \left( \cos \alpha \cos \beta -0\left( \cos \alpha \cos \beta \right) \right)-\cos \alpha \sin \beta \left( -\cos \alpha \sin \beta -0\left( \sin \alpha {{\cos }^{2}}\beta \right) \right)-\sin \alpha \left( -\sin \alpha {{\sin }^{2}}\beta -\sin \alpha {{\cos }^{2}}\beta \right)$.
Simplifying the above expression, we have $\Delta ={{\cos }^{2}}\alpha {{\cos }^{2}}\beta +{{\cos }^{2}}\alpha {{\sin }^{2}}\beta +{{\sin }^{2}}\alpha {{\sin }^{2}}\beta +{{\sin }^{2}}\alpha {{\cos }^{2}}\beta $.
Rearranging the terms of the above equation, we have $\Delta ={{\cos }^{2}}\alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right)+{{\sin }^{2}}\alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right)$.
We know the trigonometric identity ${{\cos }^{2}}x+{{\sin }^{2}}x=1$.
Thus, we have $\Delta ={{\cos }^{2}}\alpha \left( 1 \right)+{{\sin }^{2}}\alpha \left( 1 \right)={{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha $.
So, we have $\Delta ={{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha =1$.
Hence, the value of the matrix \[\Delta =\left| \begin{matrix}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \\
\end{matrix} \right|\] is 1.
Note: We can expand the matrix along any row or column. However, in each case, the value of the matrix remains the same. A matrix is a rectangular array of numbers, symbols, or expressions arranged in rows and columns. The dimension of a matrix is written as the product of the number of rows and columns. Two matrices can be added or subtracted element by element if they have the same dimension.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

