
Evaluate the value of the limit $\int_{-2\pi }^{5\pi }{{{\cot }^{-1}}\left( \tan x \right)dx}$.
Answer
584.4k+ views
Hint: We here need to find the value of the definite integral $\int_{-2\pi }^{5\pi }{{{\cot }^{-1}}\left( \tan x \right)dx}$. We will here convert ${{\cot }^{-1}}\left( \tan x \right)$ into ${{\tan }^{-1}}\left( \tan x \right)$ by using the property ${{\cot }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}$ and then by using the property ${{\tan }^{-1}}\left( \tan x \right)=x$, we will bring the integral in the form of constants and x. then we will use the property $\int_{a}^{b}{{{x}^{n}}dx}=\left[ \dfrac{{{x}^{n+1}}}{n+1} \right]_{a}^{b}=\left[ \dfrac{{{b}^{n+1}}}{n+1}-\dfrac{{{a}^{n+1}}}{n+1} \right]$ and after solving via this, we will get our required answer.
Complete step by step answer:
Now, we have to find the value of the definite integral given as $\int_{-2\pi }^{5\pi }{{{\cot }^{-1}}\left( \tan x \right)dx}$. Let this be ‘I’.
Thus, we can say that:
$I=\int_{-2\pi }^{5\pi }{{{\cot }^{-1}}\left( \tan x \right)dx}$
Now, we will solve this using properties of trigonometry and that of definite integration.
Now, inside the integral sign, we have been given the function as ${{\cot }^{-1}}\left( \tan x \right)$ .
We will try to make it in the form of ${{\tan }^{-1}}\left( \tan x \right)$ because of the property given by:
${{\tan }^{-1}}\left( \tan x \right)=x\text{ }\forall x\in R$
Now, we know the property given as:
${{\cot }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}$
Now, if we replace ‘x’ in the argument of these functions with ${{\tan }^{-1}}\left( \tan x \right)$ , we will get the following result:
${{\cot }^{-1}}\left( \tan x \right)+{{\tan }^{-1}}\left( \tan x \right)=\dfrac{\pi }{2}$
$\Rightarrow {{\cot }^{-1}}\left( \tan x \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \tan x \right)$ …..(i)
Now, as mentioned above, we know that ${{\tan }^{-1}}\left( \tan x \right)=x$. Thus, we can write ${{\cot }^{-1}}\left( \tan x \right)$ as:
$\begin{align}
& {{\cot }^{-1}}\left( \tan x \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \tan x \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \tan x \right)=\dfrac{\pi }{2}-x \\
\end{align}$
Thus, we get that \[{{\cot }^{-1}}\left( \tan x \right)=\dfrac{\pi }{2}-x\] …..(ii)
Now, we can substitute the value of ${{\cot }^{-1}}\left( \tan x \right)$ from equation (ii).
Substituting the value of ${{\cot }^{-1}}\left( \tan x \right)$ from equation (ii) in I we get:
$\begin{align}
& I=\int_{-2\pi }^{5\pi }{{{\cot }^{-1}}\left( \tan x \right)dx} \\
& \Rightarrow I=\int_{-2\pi }^{5\pi }{\left( \dfrac{\pi }{2}-x \right)dx} \\
\end{align}$
Now, we know that $\int_{a}^{b}{\left( f\left( x \right)\pm g\left( x \right) \right)dx=\int_{a}^{b}{f\left( x \right)}}dx\pm \int_{a}^{b}{g\left( x \right)dx}$. Using this property in I we get:
$\begin{align}
& I=\int_{-2\pi }^{5\pi }{\left( \dfrac{\pi }{2}-x \right)dx} \\
& \Rightarrow I=\int_{-2\pi }^{5\pi }{\dfrac{\pi }{2}dx}-\int_{-2\pi }^{5\pi }{xdx} \\
\end{align}$
Now, we know that $\int{k{{x}^{n}}dx}=k\int{{{x}^{n}}dx}$. Using this property in I we get:
$\begin{align}
& I=\int_{-2\pi }^{5\pi }{\dfrac{\pi }{2}dx}-\int_{-2\pi }^{5\pi }{xdx} \\
& \Rightarrow I=\dfrac{\pi }{2}\int_{-2\pi }^{5\pi }{dx}-\int_{-2\pi }^{5\pi }{xdx} \\
\end{align}$
Now, we also know that $\int_{a}^{b}{{{x}^{n}}dx}=\left[ \dfrac{{{x}^{n+1}}}{n+1} \right]_{a}^{b}=\left[ \dfrac{{{b}^{n+1}}}{n+1}-\dfrac{{{a}^{n+1}}}{n+1} \right]$
Thus, using this property in I we get:
\[\begin{align}
& I=\dfrac{\pi }{2}\int_{-2\pi }^{5\pi }{dx}-\int_{-2\pi }^{5\pi }{xdx} \\
& \Rightarrow I=\dfrac{\pi }{2}\int_{-2\pi }^{5\pi }{{{x}^{0}}dx}-\int_{-2\pi }^{5\pi }{xdx} \\
\end{align}\]
Now, applying the abovementioned property and applying the limits, we get:
\[\Rightarrow I=\dfrac{\pi }{2}\left[ \dfrac{{{x}^{0+1}}}{0+1} \right]_{-2\pi }^{5\pi }-\left[ \dfrac{{{x}^{1+1}}}{1+1} \right]_{-2\pi }^{5\pi }\]
Putting in the value of the limits we get:
\[\Rightarrow I=\dfrac{\pi }{2}\left[ \dfrac{{{\left( 5\pi \right)}^{1}}}{1}-\dfrac{{{\left( -2\pi \right)}^{1}}}{1} \right]-\left[ \dfrac{{{\left( 5\pi \right)}^{2}}}{2}-\dfrac{{{\left( -2\pi \right)}^{2}}}{2} \right]\]
Solving the value of these limits we get:
\[\begin{align}
& \Rightarrow I=\dfrac{\pi }{2}\left[ 5\pi +2\pi \right]-\left[ \dfrac{25{{\pi }^{2}}-4{{\pi }^{2}}}{2} \right] \\
& \Rightarrow I=\dfrac{7{{\pi }^{2}}}{2}-\dfrac{21{{\pi }^{2}}}{2} \\
& \Rightarrow I=-\dfrac{14{{\pi }^{2}}}{2} \\
& \Rightarrow I=-7{{\pi }^{2}} \\
\end{align}\]
Thus, the required value of I is $-7{{\pi }^{2}}$.
Note: The value of ${{\cot }^{-1}}\left( \tan x \right)$ obtained in equation (ii) can also be directly obtained by the following method:
We know that $\tan x=\cot \left( \dfrac{\pi }{2}-x \right)$
Thus, putting this value of $\tan x$ in ${{\cot }^{-1}}\left( \tan x \right)$ we get:
$\begin{align}
& {{\cot }^{-1}}\left( \tan x \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \cot \left( \dfrac{\pi }{2}-x \right) \right) \\
\end{align}$
Now, we also know that ${{\cot }^{-1}}\left( \cot x \right)=x\text{ }\forall x\in R$
Thus, using this property in ${{\cot }^{-1}}\left( \tan x \right)$ we get:
$\begin{align}
& \cot \left( \cot \left( \dfrac{\pi }{2}-x \right) \right) \\
& \Rightarrow \dfrac{\pi }{2}-x \\
\end{align}$
The question can be further solved the same way as above.
Complete step by step answer:
Now, we have to find the value of the definite integral given as $\int_{-2\pi }^{5\pi }{{{\cot }^{-1}}\left( \tan x \right)dx}$. Let this be ‘I’.
Thus, we can say that:
$I=\int_{-2\pi }^{5\pi }{{{\cot }^{-1}}\left( \tan x \right)dx}$
Now, we will solve this using properties of trigonometry and that of definite integration.
Now, inside the integral sign, we have been given the function as ${{\cot }^{-1}}\left( \tan x \right)$ .
We will try to make it in the form of ${{\tan }^{-1}}\left( \tan x \right)$ because of the property given by:
${{\tan }^{-1}}\left( \tan x \right)=x\text{ }\forall x\in R$
Now, we know the property given as:
${{\cot }^{-1}}x+{{\tan }^{-1}}x=\dfrac{\pi }{2}$
Now, if we replace ‘x’ in the argument of these functions with ${{\tan }^{-1}}\left( \tan x \right)$ , we will get the following result:
${{\cot }^{-1}}\left( \tan x \right)+{{\tan }^{-1}}\left( \tan x \right)=\dfrac{\pi }{2}$
$\Rightarrow {{\cot }^{-1}}\left( \tan x \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \tan x \right)$ …..(i)
Now, as mentioned above, we know that ${{\tan }^{-1}}\left( \tan x \right)=x$. Thus, we can write ${{\cot }^{-1}}\left( \tan x \right)$ as:
$\begin{align}
& {{\cot }^{-1}}\left( \tan x \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \tan x \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \tan x \right)=\dfrac{\pi }{2}-x \\
\end{align}$
Thus, we get that \[{{\cot }^{-1}}\left( \tan x \right)=\dfrac{\pi }{2}-x\] …..(ii)
Now, we can substitute the value of ${{\cot }^{-1}}\left( \tan x \right)$ from equation (ii).
Substituting the value of ${{\cot }^{-1}}\left( \tan x \right)$ from equation (ii) in I we get:
$\begin{align}
& I=\int_{-2\pi }^{5\pi }{{{\cot }^{-1}}\left( \tan x \right)dx} \\
& \Rightarrow I=\int_{-2\pi }^{5\pi }{\left( \dfrac{\pi }{2}-x \right)dx} \\
\end{align}$
Now, we know that $\int_{a}^{b}{\left( f\left( x \right)\pm g\left( x \right) \right)dx=\int_{a}^{b}{f\left( x \right)}}dx\pm \int_{a}^{b}{g\left( x \right)dx}$. Using this property in I we get:
$\begin{align}
& I=\int_{-2\pi }^{5\pi }{\left( \dfrac{\pi }{2}-x \right)dx} \\
& \Rightarrow I=\int_{-2\pi }^{5\pi }{\dfrac{\pi }{2}dx}-\int_{-2\pi }^{5\pi }{xdx} \\
\end{align}$
Now, we know that $\int{k{{x}^{n}}dx}=k\int{{{x}^{n}}dx}$. Using this property in I we get:
$\begin{align}
& I=\int_{-2\pi }^{5\pi }{\dfrac{\pi }{2}dx}-\int_{-2\pi }^{5\pi }{xdx} \\
& \Rightarrow I=\dfrac{\pi }{2}\int_{-2\pi }^{5\pi }{dx}-\int_{-2\pi }^{5\pi }{xdx} \\
\end{align}$
Now, we also know that $\int_{a}^{b}{{{x}^{n}}dx}=\left[ \dfrac{{{x}^{n+1}}}{n+1} \right]_{a}^{b}=\left[ \dfrac{{{b}^{n+1}}}{n+1}-\dfrac{{{a}^{n+1}}}{n+1} \right]$
Thus, using this property in I we get:
\[\begin{align}
& I=\dfrac{\pi }{2}\int_{-2\pi }^{5\pi }{dx}-\int_{-2\pi }^{5\pi }{xdx} \\
& \Rightarrow I=\dfrac{\pi }{2}\int_{-2\pi }^{5\pi }{{{x}^{0}}dx}-\int_{-2\pi }^{5\pi }{xdx} \\
\end{align}\]
Now, applying the abovementioned property and applying the limits, we get:
\[\Rightarrow I=\dfrac{\pi }{2}\left[ \dfrac{{{x}^{0+1}}}{0+1} \right]_{-2\pi }^{5\pi }-\left[ \dfrac{{{x}^{1+1}}}{1+1} \right]_{-2\pi }^{5\pi }\]
Putting in the value of the limits we get:
\[\Rightarrow I=\dfrac{\pi }{2}\left[ \dfrac{{{\left( 5\pi \right)}^{1}}}{1}-\dfrac{{{\left( -2\pi \right)}^{1}}}{1} \right]-\left[ \dfrac{{{\left( 5\pi \right)}^{2}}}{2}-\dfrac{{{\left( -2\pi \right)}^{2}}}{2} \right]\]
Solving the value of these limits we get:
\[\begin{align}
& \Rightarrow I=\dfrac{\pi }{2}\left[ 5\pi +2\pi \right]-\left[ \dfrac{25{{\pi }^{2}}-4{{\pi }^{2}}}{2} \right] \\
& \Rightarrow I=\dfrac{7{{\pi }^{2}}}{2}-\dfrac{21{{\pi }^{2}}}{2} \\
& \Rightarrow I=-\dfrac{14{{\pi }^{2}}}{2} \\
& \Rightarrow I=-7{{\pi }^{2}} \\
\end{align}\]
Thus, the required value of I is $-7{{\pi }^{2}}$.
Note: The value of ${{\cot }^{-1}}\left( \tan x \right)$ obtained in equation (ii) can also be directly obtained by the following method:
We know that $\tan x=\cot \left( \dfrac{\pi }{2}-x \right)$
Thus, putting this value of $\tan x$ in ${{\cot }^{-1}}\left( \tan x \right)$ we get:
$\begin{align}
& {{\cot }^{-1}}\left( \tan x \right) \\
& \Rightarrow {{\cot }^{-1}}\left( \cot \left( \dfrac{\pi }{2}-x \right) \right) \\
\end{align}$
Now, we also know that ${{\cot }^{-1}}\left( \cot x \right)=x\text{ }\forall x\in R$
Thus, using this property in ${{\cot }^{-1}}\left( \tan x \right)$ we get:
$\begin{align}
& \cot \left( \cot \left( \dfrac{\pi }{2}-x \right) \right) \\
& \Rightarrow \dfrac{\pi }{2}-x \\
\end{align}$
The question can be further solved the same way as above.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

