
Evaluate the value of the integral, $ \int {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}} $
Answer
579k+ views
Hint: In this question, we need to evaluate the given equation. For this, we will use the partial fraction method and apply the defined integral formulae.
Complete step-by-step answer:
Let the given integral be I so, we can write $ I = \int {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}} $ .
Now, by following the partial fraction method, we can write the function $ \dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} $ as:
$
\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} = \dfrac{A}{{(x + 1)}} + \dfrac{B}{{{{(x + 1)}^2}}} + \dfrac{C}{{(x + 2)}} \\
= \dfrac{{A(x + 1)(x + 2) + B(x + 2) + C{{(x + 1)}^2}}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} \\
= \dfrac{{A({x^2} + 3x + 2) + Bx + 2B + C({x^2} + 2x + 1)}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} \\
= \dfrac{{{x^2}(A + C) + x(3A + B + 2C) + (2A + 2B + C)}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} \\
$
Now, comparing the coefficients of both sides of the above equation, we get
$
\Rightarrow A + C = 1 - - - - (i) \\
\Rightarrow 3A + B + 2C = 1 - - - - (ii) \\
\Rightarrow 2A + 2B + C = 1 - - - - (iii) \\
$
Solving the above equations to determine the value of the constants A, B and C.
From the equation (i), we can write $ A = 1 - C - - - - (iv) $
Substituting the value from the equation (iv) in the equation (ii) and (iii), we can write
$
\Rightarrow 3A + B + 2C = 1 \\
\Rightarrow 3(1 - C) + B + 2C = 1 \\
\Rightarrow 3 - 3C + B + 2C = 1 \\
\Rightarrow B - C = - 2 - - - - (v) \\
$
Similarly,
$
\Rightarrow 2A + 2B + C = 1 \\
\Rightarrow 2(1 - C) + 2B + C = 1 \\
\Rightarrow 2 - 2C + 2B + C = 1 \\
\Rightarrow 2B - C = - 1 - - - - (vi) \\
$
Solving equations (v) and (vi).
From the equation (v), we get
$
\Rightarrow B - C = - 2 \\
\Rightarrow B = - 2 + C - - - - (vii) \\
$
Substituting the value of the equation (vii) in the equation (vi) we get
$
\Rightarrow 2B - C = - 1 \\
\Rightarrow 2( - 2 + C) - C = - 1 \\
\Rightarrow - 4 + 2C - C = - 1 \\
\Rightarrow C = 3 \\
$
Substituting the value of C as 3 in the equation (vii), we get
$
\Rightarrow B = - 2 + C \\
= - 2 + 3 \\
= 1 \\
$
Again, substituting the value of C as 3 in the equation (iv), we get
$
\Rightarrow A = 1 - C \\
= 1 - 3 \\
= - 2 \\
$
Hence, the values of the constant A, B and C are -2, 1 and 3 respectively.
So, the given integral function can be re-written as:
\[
\Rightarrow \int {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}dx} = \int {\left( {\dfrac{A}{{(x + 1)}} + \dfrac{B}{{{{(x + 1)}^2}}} + \dfrac{C}{{(x + 2)}}} \right)} dx \\
= \int {\left( {\dfrac{{ - 2}}{{(x + 1)}} + \dfrac{1}{{{{(x + 1)}^2}}} + \dfrac{3}{{(x + 2)}}} \right)} dx \\
\]
Now, applying the property of the integration function $ \int {\left( {A + B + C} \right)dx} = \int {Adx} + \int {Bdx} + \int {Cdx} $ in the above function.
\[
\Rightarrow \int {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}dx} = \int {\left( {\dfrac{{ - 2}}{{(x + 1)}} + \dfrac{1}{{{{(x + 1)}^2}}} + \dfrac{3}{{(x + 2)}}} \right)} dx \\
= \int {\dfrac{{ - 2}}{{(x + 1)}}dx} + \int {\dfrac{1}{{{{(x + 1)}^2}}}dx} + \int {\dfrac{3}{{(x + 2)}}dx} \\
\]
Again, applying the property of the integration function $ \int {\dfrac{{dx}}{x}} = \ln x $ in the above equation.
\[
\Rightarrow \int {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}dx} = \int {\dfrac{{ - 2}}{{(x + 1)}}dx} + \int {\dfrac{1}{{{{(x + 1)}^2}}}dx} + \int {\dfrac{3}{{(x + 2)}}dx} \\
= - 2\ln \left| {x + 1} \right| + \int {{{(x + 1)}^{ - 2}}dx} + 3\ln \left| {x + 2} \right| + c \\
= - 2\ln \left| {x + 1} \right| + 3\ln \left| {x + 2} \right| - \dfrac{1}{{(x + 1)}} + c \\
\]
Hence, we can see that the value of the integral $ \int {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}} $ is \[ - 2\ln \left| {x + 1} \right| + 3\ln \left| {x + 2} \right| - \dfrac{1}{{(x + 1)}} + c\] where, ‘c’ is the integral constant.
Note: It is interesting to note here that for the partial fraction method, if the denominator term is a raised to the power terms then, we need to bifurcate it as $ \dfrac{1}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{A}{{\left( {x + 1} \right)}} + \dfrac{B}{{{{\left( {x + 1} \right)}^2}}} $ where as if the denominator includes a quadratic equation then, we need to bifurcate it as $ \dfrac{1}{{\left( {x + 2} \right)\left( {{x^2} + 4x + 2} \right)}} = \dfrac{{Ax + B}}{{{x^2} + 4x + 2}} + \dfrac{C}{{x + 2}} $ .
Complete step-by-step answer:
Let the given integral be I so, we can write $ I = \int {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}} $ .
Now, by following the partial fraction method, we can write the function $ \dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} $ as:
$
\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} = \dfrac{A}{{(x + 1)}} + \dfrac{B}{{{{(x + 1)}^2}}} + \dfrac{C}{{(x + 2)}} \\
= \dfrac{{A(x + 1)(x + 2) + B(x + 2) + C{{(x + 1)}^2}}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} \\
= \dfrac{{A({x^2} + 3x + 2) + Bx + 2B + C({x^2} + 2x + 1)}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} \\
= \dfrac{{{x^2}(A + C) + x(3A + B + 2C) + (2A + 2B + C)}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} \\
$
Now, comparing the coefficients of both sides of the above equation, we get
$
\Rightarrow A + C = 1 - - - - (i) \\
\Rightarrow 3A + B + 2C = 1 - - - - (ii) \\
\Rightarrow 2A + 2B + C = 1 - - - - (iii) \\
$
Solving the above equations to determine the value of the constants A, B and C.
From the equation (i), we can write $ A = 1 - C - - - - (iv) $
Substituting the value from the equation (iv) in the equation (ii) and (iii), we can write
$
\Rightarrow 3A + B + 2C = 1 \\
\Rightarrow 3(1 - C) + B + 2C = 1 \\
\Rightarrow 3 - 3C + B + 2C = 1 \\
\Rightarrow B - C = - 2 - - - - (v) \\
$
Similarly,
$
\Rightarrow 2A + 2B + C = 1 \\
\Rightarrow 2(1 - C) + 2B + C = 1 \\
\Rightarrow 2 - 2C + 2B + C = 1 \\
\Rightarrow 2B - C = - 1 - - - - (vi) \\
$
Solving equations (v) and (vi).
From the equation (v), we get
$
\Rightarrow B - C = - 2 \\
\Rightarrow B = - 2 + C - - - - (vii) \\
$
Substituting the value of the equation (vii) in the equation (vi) we get
$
\Rightarrow 2B - C = - 1 \\
\Rightarrow 2( - 2 + C) - C = - 1 \\
\Rightarrow - 4 + 2C - C = - 1 \\
\Rightarrow C = 3 \\
$
Substituting the value of C as 3 in the equation (vii), we get
$
\Rightarrow B = - 2 + C \\
= - 2 + 3 \\
= 1 \\
$
Again, substituting the value of C as 3 in the equation (iv), we get
$
\Rightarrow A = 1 - C \\
= 1 - 3 \\
= - 2 \\
$
Hence, the values of the constant A, B and C are -2, 1 and 3 respectively.
So, the given integral function can be re-written as:
\[
\Rightarrow \int {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}dx} = \int {\left( {\dfrac{A}{{(x + 1)}} + \dfrac{B}{{{{(x + 1)}^2}}} + \dfrac{C}{{(x + 2)}}} \right)} dx \\
= \int {\left( {\dfrac{{ - 2}}{{(x + 1)}} + \dfrac{1}{{{{(x + 1)}^2}}} + \dfrac{3}{{(x + 2)}}} \right)} dx \\
\]
Now, applying the property of the integration function $ \int {\left( {A + B + C} \right)dx} = \int {Adx} + \int {Bdx} + \int {Cdx} $ in the above function.
\[
\Rightarrow \int {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}dx} = \int {\left( {\dfrac{{ - 2}}{{(x + 1)}} + \dfrac{1}{{{{(x + 1)}^2}}} + \dfrac{3}{{(x + 2)}}} \right)} dx \\
= \int {\dfrac{{ - 2}}{{(x + 1)}}dx} + \int {\dfrac{1}{{{{(x + 1)}^2}}}dx} + \int {\dfrac{3}{{(x + 2)}}dx} \\
\]
Again, applying the property of the integration function $ \int {\dfrac{{dx}}{x}} = \ln x $ in the above equation.
\[
\Rightarrow \int {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}dx} = \int {\dfrac{{ - 2}}{{(x + 1)}}dx} + \int {\dfrac{1}{{{{(x + 1)}^2}}}dx} + \int {\dfrac{3}{{(x + 2)}}dx} \\
= - 2\ln \left| {x + 1} \right| + \int {{{(x + 1)}^{ - 2}}dx} + 3\ln \left| {x + 2} \right| + c \\
= - 2\ln \left| {x + 1} \right| + 3\ln \left| {x + 2} \right| - \dfrac{1}{{(x + 1)}} + c \\
\]
Hence, we can see that the value of the integral $ \int {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}} $ is \[ - 2\ln \left| {x + 1} \right| + 3\ln \left| {x + 2} \right| - \dfrac{1}{{(x + 1)}} + c\] where, ‘c’ is the integral constant.
Note: It is interesting to note here that for the partial fraction method, if the denominator term is a raised to the power terms then, we need to bifurcate it as $ \dfrac{1}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{A}{{\left( {x + 1} \right)}} + \dfrac{B}{{{{\left( {x + 1} \right)}^2}}} $ where as if the denominator includes a quadratic equation then, we need to bifurcate it as $ \dfrac{1}{{\left( {x + 2} \right)\left( {{x^2} + 4x + 2} \right)}} = \dfrac{{Ax + B}}{{{x^2} + 4x + 2}} + \dfrac{C}{{x + 2}} $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

