
Evaluate the value of the integral $\int {\dfrac{{\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x}}{{\sin 2x + 3\sin 4x + 3\sin 6x}}} dx$.
Answer
601.2k+ views
Hint: Here, we will proceed by splitting the terms in the numerator of the given integral in such a way that the formulas $\sin {\text{A}} + \sin {\text{B}} = 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ can be used to convert the numerator in terms of the denominator of the given integral.
Complete step-by-step answer:
Let us suppose the integral ${\text{I}} = \int {\left( {\dfrac{{\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x}}{{\sin 2x + 3\sin 4x + 3\sin 6x}}} \right)} dx{\text{ }} \to {\text{(1)}}$
Let us consider the numerator of the integral mentioned in equation (1), we get
$
\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = \sin x + \left( {4\sin 3x + 4\sin 5x} \right) + \left( {2\sin 5x + 2\sin 7x} \right) + \sin 7x \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = \left( {\sin x + \sin 7x} \right) + 4\left( {\sin 3x + \sin 5x} \right) + 2\left( {\sin 5x + \sin 7x} \right){\text{ }} \to {\text{(2)}} \\
$
As we know that $\sin {\text{A}} + \sin {\text{B}} = 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$
Using the above formula, equation (2) becomes
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin \left( {\dfrac{{x + 7x}}{2}} \right)\cos \left( {\dfrac{{x - 7x}}{2}} \right) + 4\left[ {2\sin \left( {\dfrac{{3x + 5x}}{2}} \right)\cos \left( {\dfrac{{3x - 5x}}{2}} \right)} \right] + 2\left[ {2\sin \left( {\dfrac{{5x + 7x}}{2}} \right)\cos \left( {\dfrac{{5x - 7x}}{2}} \right)} \right] \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin \left( {\dfrac{{8x}}{2}} \right)\cos \left( {\dfrac{{ - 6x}}{2}} \right) + 4\left[ {2\sin \left( {\dfrac{{8x}}{2}} \right)\cos \left( {\dfrac{{ - 2x}}{2}} \right)} \right] + 2\left[ {2\sin \left( {\dfrac{{12x}}{2}} \right)\cos \left( {\dfrac{{ - 2x}}{2}} \right)} \right] \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin \left( {4x} \right)\cos \left( { - 3x} \right) + 8\sin \left( {4x} \right)\cos \left( { - x} \right) + 4\sin \left( {6x} \right)\cos \left( { - x} \right){\text{ }} \to (3) \\
\]
Using the formula $\cos \left( { - \theta } \right) = \cos \theta $ in equation (3), we get
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\cos 3x + 8\sin 4x\cos x + 4\sin 6x\cos x \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = \left( {2\sin 4x\cos 3x + 2\sin 4x\cos x} \right) + 2\sin 4x\cos x + \left( {4\sin 4x\cos x + 4\sin 6x\cos x} \right) \\
\]
By taking 2sin4x and 4cosx common from the first two and the last two terms in the RHS of the above equation, we get
\[ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left( {\cos 3x + \cos x} \right) + 2\sin 4x\cos x + 4\cos x\left( {\sin 4x + \sin 6x} \right){\text{ }} \to {\text{(4)}}\]
Using the formulas $\sin {\text{A}} + \sin {\text{B}} = 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ in the RHS of equation (4), we get
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left[ {2\cos \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right)} \right] + 2\sin 4x\cos x + 4\cos x\left[ {2\sin \left( {\dfrac{{4x + 6x}}{2}} \right)\cos \left( {\dfrac{{4x - 6x}}{2}} \right)} \right] \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left[ {2\cos \left( {\dfrac{{4x}}{2}} \right)\cos \left( {\dfrac{{2x}}{2}} \right)} \right] + 2\sin 4x\cos x + 4\cos x\left[ {2\sin \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{ - 2x}}{2}} \right)} \right] \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left[ {2\cos \left( {2x} \right)\cos \left( x \right)} \right] + 2\sin 4x\cos x + 4\cos x\left[ {2\sin \left( {5x} \right)\cos \left( { - x} \right)} \right]{\text{ }} \to {\text{(5)}} \\
\]
Using the formula $\cos \left( { - \theta } \right) = \cos \theta $ in equation (5), we get
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 4\sin 4x\cos 2x\cos x + 2\sin 4x\cos x + 8\cos x\sin 5x\cos x \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 4\sin 4x\cos 2x\cos x + 2\sin 4x\cos x + 8\cos x\sin 5x\cos x \\
\]
Now taking 2cox common from all the terms in the RHS of the above equation, we get
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {2\sin 4x\cos 2x + \sin 4x + 4\sin 5x\cos x} \right) \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\left[ {2\sin \left( {\dfrac{{6x + 2x}}{2}} \right)\cos \left( {\dfrac{{6x - 2x}}{2}} \right)} \right] + \sin 4x + 2\left[ {2\sin \left( {\dfrac{{6x + 4x}}{2}} \right)\cos \left( {\dfrac{{6x - 4x}}{2}} \right)} \right]} \right) \\
\]
Using the formula $2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right) = \sin {\text{A}} + \sin {\text{B}}$, the above equation becomes
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\left[ {\sin 6x + \sin 2x} \right] + \sin 4x + 2\left[ {\sin 6x + \sin 4x} \right]} \right) \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\sin 6x + \sin 2x + \sin 4x + 2\sin 6x + 2\sin 4x} \right) \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\sin 2x + 3\sin 4x + 3\sin 6x} \right){\text{ }} \to {\text{(6)}} \\
\]
Now, substitute the equation (6) in equation (1), we get
$
\Rightarrow {\text{I}} = \int {\left( {\dfrac{{2\cos x\left( {\sin 2x + 3\sin 4x + 3\sin 6x} \right)}}{{\sin 2x + 3\sin 4x + 3\sin 6x}}} \right)} dx \\
\Rightarrow {\text{I}} = \int {\left( {2\cos x} \right)} dx \\
\Rightarrow {\text{I}} = 2\int {\cos x} dx \\
\Rightarrow {\text{I}} = 2\left[ {\sin x} \right] + c \\
\Rightarrow {\text{I}} = 2\sin x + c \\
$
Where c is the constant of integration.
Therefore, the value of the integral $\int {\dfrac{{\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x}}{{\sin 2x + 3\sin 4x + 3\sin 6x}}} dx$ is $\left( {2\sin x + c} \right)$.
Note: In this particular problem, we have written the terms in the numerator of the given integral in such a way that the multiples of the sine trigonometric function becomes same and then by taking that multiple common, we can use the formula $\sin {\text{A}} + \sin {\text{B}} = 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and when all the terms are reduced we are using the inverse of this formula so that some the given integral is simplified into an easy integral.
Complete step-by-step answer:
Let us suppose the integral ${\text{I}} = \int {\left( {\dfrac{{\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x}}{{\sin 2x + 3\sin 4x + 3\sin 6x}}} \right)} dx{\text{ }} \to {\text{(1)}}$
Let us consider the numerator of the integral mentioned in equation (1), we get
$
\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = \sin x + \left( {4\sin 3x + 4\sin 5x} \right) + \left( {2\sin 5x + 2\sin 7x} \right) + \sin 7x \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = \left( {\sin x + \sin 7x} \right) + 4\left( {\sin 3x + \sin 5x} \right) + 2\left( {\sin 5x + \sin 7x} \right){\text{ }} \to {\text{(2)}} \\
$
As we know that $\sin {\text{A}} + \sin {\text{B}} = 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$
Using the above formula, equation (2) becomes
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin \left( {\dfrac{{x + 7x}}{2}} \right)\cos \left( {\dfrac{{x - 7x}}{2}} \right) + 4\left[ {2\sin \left( {\dfrac{{3x + 5x}}{2}} \right)\cos \left( {\dfrac{{3x - 5x}}{2}} \right)} \right] + 2\left[ {2\sin \left( {\dfrac{{5x + 7x}}{2}} \right)\cos \left( {\dfrac{{5x - 7x}}{2}} \right)} \right] \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin \left( {\dfrac{{8x}}{2}} \right)\cos \left( {\dfrac{{ - 6x}}{2}} \right) + 4\left[ {2\sin \left( {\dfrac{{8x}}{2}} \right)\cos \left( {\dfrac{{ - 2x}}{2}} \right)} \right] + 2\left[ {2\sin \left( {\dfrac{{12x}}{2}} \right)\cos \left( {\dfrac{{ - 2x}}{2}} \right)} \right] \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin \left( {4x} \right)\cos \left( { - 3x} \right) + 8\sin \left( {4x} \right)\cos \left( { - x} \right) + 4\sin \left( {6x} \right)\cos \left( { - x} \right){\text{ }} \to (3) \\
\]
Using the formula $\cos \left( { - \theta } \right) = \cos \theta $ in equation (3), we get
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\cos 3x + 8\sin 4x\cos x + 4\sin 6x\cos x \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = \left( {2\sin 4x\cos 3x + 2\sin 4x\cos x} \right) + 2\sin 4x\cos x + \left( {4\sin 4x\cos x + 4\sin 6x\cos x} \right) \\
\]
By taking 2sin4x and 4cosx common from the first two and the last two terms in the RHS of the above equation, we get
\[ \Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left( {\cos 3x + \cos x} \right) + 2\sin 4x\cos x + 4\cos x\left( {\sin 4x + \sin 6x} \right){\text{ }} \to {\text{(4)}}\]
Using the formulas $\sin {\text{A}} + \sin {\text{B}} = 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ in the RHS of equation (4), we get
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left[ {2\cos \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right)} \right] + 2\sin 4x\cos x + 4\cos x\left[ {2\sin \left( {\dfrac{{4x + 6x}}{2}} \right)\cos \left( {\dfrac{{4x - 6x}}{2}} \right)} \right] \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left[ {2\cos \left( {\dfrac{{4x}}{2}} \right)\cos \left( {\dfrac{{2x}}{2}} \right)} \right] + 2\sin 4x\cos x + 4\cos x\left[ {2\sin \left( {\dfrac{{10x}}{2}} \right)\cos \left( {\dfrac{{ - 2x}}{2}} \right)} \right] \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\sin 4x\left[ {2\cos \left( {2x} \right)\cos \left( x \right)} \right] + 2\sin 4x\cos x + 4\cos x\left[ {2\sin \left( {5x} \right)\cos \left( { - x} \right)} \right]{\text{ }} \to {\text{(5)}} \\
\]
Using the formula $\cos \left( { - \theta } \right) = \cos \theta $ in equation (5), we get
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 4\sin 4x\cos 2x\cos x + 2\sin 4x\cos x + 8\cos x\sin 5x\cos x \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 4\sin 4x\cos 2x\cos x + 2\sin 4x\cos x + 8\cos x\sin 5x\cos x \\
\]
Now taking 2cox common from all the terms in the RHS of the above equation, we get
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {2\sin 4x\cos 2x + \sin 4x + 4\sin 5x\cos x} \right) \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\left[ {2\sin \left( {\dfrac{{6x + 2x}}{2}} \right)\cos \left( {\dfrac{{6x - 2x}}{2}} \right)} \right] + \sin 4x + 2\left[ {2\sin \left( {\dfrac{{6x + 4x}}{2}} \right)\cos \left( {\dfrac{{6x - 4x}}{2}} \right)} \right]} \right) \\
\]
Using the formula $2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right) = \sin {\text{A}} + \sin {\text{B}}$, the above equation becomes
\[
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\left[ {\sin 6x + \sin 2x} \right] + \sin 4x + 2\left[ {\sin 6x + \sin 4x} \right]} \right) \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\sin 6x + \sin 2x + \sin 4x + 2\sin 6x + 2\sin 4x} \right) \\
\Rightarrow \sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x = 2\cos x\left( {\sin 2x + 3\sin 4x + 3\sin 6x} \right){\text{ }} \to {\text{(6)}} \\
\]
Now, substitute the equation (6) in equation (1), we get
$
\Rightarrow {\text{I}} = \int {\left( {\dfrac{{2\cos x\left( {\sin 2x + 3\sin 4x + 3\sin 6x} \right)}}{{\sin 2x + 3\sin 4x + 3\sin 6x}}} \right)} dx \\
\Rightarrow {\text{I}} = \int {\left( {2\cos x} \right)} dx \\
\Rightarrow {\text{I}} = 2\int {\cos x} dx \\
\Rightarrow {\text{I}} = 2\left[ {\sin x} \right] + c \\
\Rightarrow {\text{I}} = 2\sin x + c \\
$
Where c is the constant of integration.
Therefore, the value of the integral $\int {\dfrac{{\sin x + 4\sin 3x + 6\sin 5x + 3\sin 7x}}{{\sin 2x + 3\sin 4x + 3\sin 6x}}} dx$ is $\left( {2\sin x + c} \right)$.
Note: In this particular problem, we have written the terms in the numerator of the given integral in such a way that the multiples of the sine trigonometric function becomes same and then by taking that multiple common, we can use the formula $\sin {\text{A}} + \sin {\text{B}} = 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and when all the terms are reduced we are using the inverse of this formula so that some the given integral is simplified into an easy integral.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

