
Evaluate the value of $\int\limits_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}} dx$ .
A) $\dfrac{{{\pi ^2}}}{4}$
B) $\dfrac{{{\pi ^2}}}{2}$
C) $\dfrac{{{\pi ^2}}}{{2\sqrt 2 }}$
D) $\dfrac{{{\pi ^2}}}{{4\sqrt 2 }}$
Answer
581.1k+ views
Hint:
Let $I = \int\limits_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}} dx$
Then, applying the property $\int\limits_a^b {xdx = \int\limits_a^b {\left( {a + b - x} \right)dx}} $.
Now add both the equations before property and after property and solve further.
Finally, find I.
Complete step by step solution:
Let $I = \int\limits_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}} dx$ … (1)
Now, applying the property $\int\limits_a^b {xdx = \int\limits_a^b {\left( {a + b - x} \right)dx} } $ in equation (1)
$\therefore I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}\left( {\pi - x} \right)}}} dx$
$ = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}x}}} dx$ … (2)
On adding equation (1) and equation (2), we get
$
I + I = \int\limits_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}} dx + \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}x}}} dx \\
\Rightarrow 2I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x + x} \right)\sin x}}{{1 + {{\cos }^2}x}}} dx \\
\Rightarrow 2I = \int\limits_0^\pi {\dfrac{{\pi \sin x}}{{1 + {{\cos }^2}x}}} dx \\
\Rightarrow 2I = \pi \int\limits_0^\pi {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}} dx \\
$
Let $\cos x = t$.
$\therefore - \sin xdx = dt$
Also, at $x = 0,t = \cos \left( 0 \right) = 1$ and at $x = \pi ,t = \cos \left( \pi \right) = - 1$ .
So, \[2I = - \pi \int\limits_1^{ - 1} {\dfrac{{dt}}{{1 + {t^2}}}} \]
Applying the property, $\int\limits_{ - a}^a {xdx} = - \int\limits_a^{ - a} {xdx} $ , we get
\[2I = \pi \int\limits_{ - 1}^1 {\dfrac{{dt}}{{1 + {t^2}}}} \]
\[
\therefore 2I = \pi \left[ {{{\tan }^{ - 1}}t} \right]_{ - 1}^1 \\
\therefore 2I = \pi \left[ {{{\tan }^{ - 1}}\left( 1 \right) - {{\tan }^{ - 1}}\left( { - 1} \right)} \right] \\
\therefore 2I = \pi \left[ {{{\tan }^{ - 1}}\left( 1 \right) + {{\tan }^{ - 1}}\left( 1 \right)} \right] \\
\therefore 2I = \pi \times 2 \times {\tan ^{ - 1}}\left( 1 \right) \\
\therefore \dfrac{{2I}}{2} = \pi \times \dfrac{\pi }{4} \\
\therefore I = \dfrac{{{\pi ^2}}}{4} \\
\]
Thus, option (A) is correct.
Note:
Some properties of definite integration:
$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^b {\left( {a + b - f\left( x \right)} \right)dx} } $
$\int\limits_{ - a}^a {f\left( x \right)dx} = - \int\limits_a^{ - a} {f\left( x \right)dx} $
$\int\limits_a^b {kxdx = } k\int\limits_a^b {xdx} $
$\int\limits_a^a {f\left( x \right)dx = } 0$
$\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx}$
Let $I = \int\limits_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}} dx$
Then, applying the property $\int\limits_a^b {xdx = \int\limits_a^b {\left( {a + b - x} \right)dx}} $.
Now add both the equations before property and after property and solve further.
Finally, find I.
Complete step by step solution:
Let $I = \int\limits_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}} dx$ … (1)
Now, applying the property $\int\limits_a^b {xdx = \int\limits_a^b {\left( {a + b - x} \right)dx} } $ in equation (1)
$\therefore I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}\left( {\pi - x} \right)}}} dx$
$ = \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}x}}} dx$ … (2)
On adding equation (1) and equation (2), we get
$
I + I = \int\limits_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}} dx + \int\limits_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}x}}} dx \\
\Rightarrow 2I = \int\limits_0^\pi {\dfrac{{\left( {\pi - x + x} \right)\sin x}}{{1 + {{\cos }^2}x}}} dx \\
\Rightarrow 2I = \int\limits_0^\pi {\dfrac{{\pi \sin x}}{{1 + {{\cos }^2}x}}} dx \\
\Rightarrow 2I = \pi \int\limits_0^\pi {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}} dx \\
$
Let $\cos x = t$.
$\therefore - \sin xdx = dt$
Also, at $x = 0,t = \cos \left( 0 \right) = 1$ and at $x = \pi ,t = \cos \left( \pi \right) = - 1$ .
So, \[2I = - \pi \int\limits_1^{ - 1} {\dfrac{{dt}}{{1 + {t^2}}}} \]
Applying the property, $\int\limits_{ - a}^a {xdx} = - \int\limits_a^{ - a} {xdx} $ , we get
\[2I = \pi \int\limits_{ - 1}^1 {\dfrac{{dt}}{{1 + {t^2}}}} \]
\[
\therefore 2I = \pi \left[ {{{\tan }^{ - 1}}t} \right]_{ - 1}^1 \\
\therefore 2I = \pi \left[ {{{\tan }^{ - 1}}\left( 1 \right) - {{\tan }^{ - 1}}\left( { - 1} \right)} \right] \\
\therefore 2I = \pi \left[ {{{\tan }^{ - 1}}\left( 1 \right) + {{\tan }^{ - 1}}\left( 1 \right)} \right] \\
\therefore 2I = \pi \times 2 \times {\tan ^{ - 1}}\left( 1 \right) \\
\therefore \dfrac{{2I}}{2} = \pi \times \dfrac{\pi }{4} \\
\therefore I = \dfrac{{{\pi ^2}}}{4} \\
\]
Thus, option (A) is correct.
Note:
Some properties of definite integration:
$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^b {\left( {a + b - f\left( x \right)} \right)dx} } $
$\int\limits_{ - a}^a {f\left( x \right)dx} = - \int\limits_a^{ - a} {f\left( x \right)dx} $
$\int\limits_a^b {kxdx = } k\int\limits_a^b {xdx} $
$\int\limits_a^a {f\left( x \right)dx = } 0$
$\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx}$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

