
Evaluate the Integration, \[\int{{{\sec }^{2}}\theta {{\left( \sec \theta +\tan \theta \right)}^{2}}d\theta }\] .
Answer
557.7k+ views
Hint: Assume that \[t=\left( \sec \theta +\tan \theta \right)\] . Differentiate \[t\] with respect to \[d\theta \] and get the relation between \[dt\] and \[d\theta \] . We know the identity, \[\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)=1\] . Now, get the value of \[\left( \sec \theta -\tan \theta \right)\] in terms of \[t\] by expanding the identity \[\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)=1\] using the formula, \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] . Now, arrange the given expression as \[\int{\sec \theta \left( \sec \theta +\tan \theta \right)\sec \theta \left( \sec \theta +\tan \theta \right)d\theta }\] and then modify it in terms of \[t\] . Solve it further by using the formula, \[\int{{{t}^{a}}dt=\dfrac{{{t}^{a+1}}}{a+1}}\] .
Complete step by step solution:
According to the question, we have to integrate, \[\int{{{\sec }^{2}}\theta {{\left( \sec \theta +\tan \theta \right)}^{2}}d\theta }\] ……………………………………..(1)
We have to simplify the above equation into a simpler form.
First of all, let us assume that \[t=\left( \sec \theta +\tan \theta \right)\] ………………………………..(2)
Now, on differentiating the LHS and RHS with respect to \[d\theta \] of equation (2), we get
\[\dfrac{dt}{d\theta }=\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\] ……………………………….(3)
We know the formula, \[\dfrac{d\left( \sec \theta \right)}{d\theta }=\sec \theta \tan \theta \] and \[\dfrac{d\left( \tan \theta \right)}{d\theta }={{\sec }^{2}}\theta \] …………………………………..(4)
Now, using the formula shown in equation (4) and on simplifying equation (4), we get
\[\begin{align}
& \Rightarrow \dfrac{dt}{d\theta }=\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right) \\
& \Rightarrow \dfrac{dt}{d\theta }=\sec \theta \left( \sec \theta +\tan \theta \right) \\
\end{align}\]
\[\Rightarrow dt=\sec \theta \left( \sec \theta +\tan \theta \right)d\theta \] ………………………………………….(5)
We know the identity, \[\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)=1\]
We also know the formula, \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] .
Now, from the above identity and formula, we get
\[\Rightarrow \left( \sec \theta +\tan \theta \right)\left( \sec \theta -\tan \theta \right)=1\] ………………………………………..(6)
Using equation (2) and on substituting \[\left( \sec \theta +\tan \theta \right)\] by t in equation (6), we get
\[\Rightarrow t\left( \sec \theta -\tan \theta \right)=1\]
\[\Rightarrow \left( \sec \theta -\tan \theta \right)=\dfrac{1}{t}\] ………………………………………….(7)
Now, on adding equation (2) and equation (7), we get
\[\begin{align}
& \Rightarrow \left( \sec \theta +\tan \theta \right)+\left( \sec \theta -\tan \theta \right)=t+\dfrac{1}{t} \\
& \Rightarrow 2\sec \theta =\left( t+\dfrac{1}{t} \right) \\
\end{align}\]
\[\Rightarrow \sec \theta =\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)\]…………………………………………(8)
Now, arranging equation (1), we get
\[=\int{\sec \theta \left( \sec \theta +\tan \theta \right)\sec \theta \left( \sec \theta +\tan \theta \right)d\theta }\] ……………………………………………………(9)
Using equation (2), equation (5), equation (8), and on substituting \[\sec \theta \] by \[\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)\], \[\left( \sec \theta +\tan \theta \right)\] by \[t\] , and \[\sec \theta \left( \sec \theta +\tan \theta \right)d\theta \] by \[dt\] , we get
\[\begin{align}
& =\int{\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)tdt} \\
& =\dfrac{1}{2}\int{\left( {{t}^{2}}+\dfrac{1}{t}\times t \right)dt} \\
& =\dfrac{1}{2}\int{\left( {{t}^{2}}+1 \right)dt} \\
\end{align}\]
\[=\dfrac{1}{2}\left( \int{{{t}^{2}}dt+\int{dt}} \right)\] …………………………………..(10)
We also know the formula, \[\int{{{t}^{a}}dt=\dfrac{{{t}^{a+1}}}{a+1}}\] ………………………………………(11)
Using equation (11) and simplifying equation (10), we get
\[=\dfrac{1}{2}\left( \dfrac{{{t}^{3}}}{3}+t \right)+c\] ……………………………………………………..(12)
From equation (2), we have \[t=\left( \sec \theta +\tan \theta \right)\] .
Now, on substituting \[t\] by \[\left( \sec \theta +\tan \theta \right)\] in equation (12), we get
\[=\dfrac{1}{2}\left\{ \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{3}}}{3}+\left( \sec \theta +\tan \theta \right) \right\}+c\] ………………………………………………….(13)
Therefore, \[\int{{{\sec }^{2}}\theta {{\left( \sec \theta +\tan \theta \right)}^{2}}d\theta }=\dfrac{1}{2}\left\{ \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{3}}}{3}+\left( \sec \theta +\tan \theta \right) \right\}+c\] .
Note: For this question, one might think to expand the expression and then simplify it. This approach will not work here because on expanding we get more terms which will make the solution more complex to be simplified further.
Complete step by step solution:
According to the question, we have to integrate, \[\int{{{\sec }^{2}}\theta {{\left( \sec \theta +\tan \theta \right)}^{2}}d\theta }\] ……………………………………..(1)
We have to simplify the above equation into a simpler form.
First of all, let us assume that \[t=\left( \sec \theta +\tan \theta \right)\] ………………………………..(2)
Now, on differentiating the LHS and RHS with respect to \[d\theta \] of equation (2), we get
\[\dfrac{dt}{d\theta }=\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\] ……………………………….(3)
We know the formula, \[\dfrac{d\left( \sec \theta \right)}{d\theta }=\sec \theta \tan \theta \] and \[\dfrac{d\left( \tan \theta \right)}{d\theta }={{\sec }^{2}}\theta \] …………………………………..(4)
Now, using the formula shown in equation (4) and on simplifying equation (4), we get
\[\begin{align}
& \Rightarrow \dfrac{dt}{d\theta }=\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right) \\
& \Rightarrow \dfrac{dt}{d\theta }=\sec \theta \left( \sec \theta +\tan \theta \right) \\
\end{align}\]
\[\Rightarrow dt=\sec \theta \left( \sec \theta +\tan \theta \right)d\theta \] ………………………………………….(5)
We know the identity, \[\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)=1\]
We also know the formula, \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] .
Now, from the above identity and formula, we get
\[\Rightarrow \left( \sec \theta +\tan \theta \right)\left( \sec \theta -\tan \theta \right)=1\] ………………………………………..(6)
Using equation (2) and on substituting \[\left( \sec \theta +\tan \theta \right)\] by t in equation (6), we get
\[\Rightarrow t\left( \sec \theta -\tan \theta \right)=1\]
\[\Rightarrow \left( \sec \theta -\tan \theta \right)=\dfrac{1}{t}\] ………………………………………….(7)
Now, on adding equation (2) and equation (7), we get
\[\begin{align}
& \Rightarrow \left( \sec \theta +\tan \theta \right)+\left( \sec \theta -\tan \theta \right)=t+\dfrac{1}{t} \\
& \Rightarrow 2\sec \theta =\left( t+\dfrac{1}{t} \right) \\
\end{align}\]
\[\Rightarrow \sec \theta =\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)\]…………………………………………(8)
Now, arranging equation (1), we get
\[=\int{\sec \theta \left( \sec \theta +\tan \theta \right)\sec \theta \left( \sec \theta +\tan \theta \right)d\theta }\] ……………………………………………………(9)
Using equation (2), equation (5), equation (8), and on substituting \[\sec \theta \] by \[\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)\], \[\left( \sec \theta +\tan \theta \right)\] by \[t\] , and \[\sec \theta \left( \sec \theta +\tan \theta \right)d\theta \] by \[dt\] , we get
\[\begin{align}
& =\int{\dfrac{1}{2}\left( t+\dfrac{1}{t} \right)tdt} \\
& =\dfrac{1}{2}\int{\left( {{t}^{2}}+\dfrac{1}{t}\times t \right)dt} \\
& =\dfrac{1}{2}\int{\left( {{t}^{2}}+1 \right)dt} \\
\end{align}\]
\[=\dfrac{1}{2}\left( \int{{{t}^{2}}dt+\int{dt}} \right)\] …………………………………..(10)
We also know the formula, \[\int{{{t}^{a}}dt=\dfrac{{{t}^{a+1}}}{a+1}}\] ………………………………………(11)
Using equation (11) and simplifying equation (10), we get
\[=\dfrac{1}{2}\left( \dfrac{{{t}^{3}}}{3}+t \right)+c\] ……………………………………………………..(12)
From equation (2), we have \[t=\left( \sec \theta +\tan \theta \right)\] .
Now, on substituting \[t\] by \[\left( \sec \theta +\tan \theta \right)\] in equation (12), we get
\[=\dfrac{1}{2}\left\{ \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{3}}}{3}+\left( \sec \theta +\tan \theta \right) \right\}+c\] ………………………………………………….(13)
Therefore, \[\int{{{\sec }^{2}}\theta {{\left( \sec \theta +\tan \theta \right)}^{2}}d\theta }=\dfrac{1}{2}\left\{ \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{3}}}{3}+\left( \sec \theta +\tan \theta \right) \right\}+c\] .
Note: For this question, one might think to expand the expression and then simplify it. This approach will not work here because on expanding we get more terms which will make the solution more complex to be simplified further.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

