
Evaluate the integral of the following
\[\int{{{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right)dx}\]
Answer
607.2k+ views
Hint:If $f(x)$ is derivable function of x, then $\int{{{e}^{x}}\left[ f(x)+f'(x) \right]dx}={{e}^{x}}f(x)+c$ , where c is the constant of integration. This theorem can be used when the multiple of ${{e}^{x}}$ can be expressed as$f(x)+f'(x)$.
Complete step-by-step answer:
Let \[I=\int{{{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right)dx}..........(1)\]
Comparing the given integral which is represented by the equation (1) with $\int{{{e}^{x}}\left[ f(x)+f'(x) \right]dx}$ , we get
The function $f(x)=\dfrac{1}{x}$ and the differentiation of the function $f(x)$ is $f'(x)=\dfrac{-1}{{{x}^{2}}}$
Let \[{{e}^{x}}f(x)={{e}^{x}}\left( \dfrac{1}{x} \right)=t.........(2)\]
The equation (2) is differentiating with respective to x by using product rule of differentiation and then we have
${{e}^{x}}\cdot \left( \dfrac{-1}{{{x}^{2}}} \right)+\left( \dfrac{1}{x} \right)\cdot {{e}^{x}}=\dfrac{dt}{dx}$
The arrangement of the terms, we get
${{e}^{x}}\cdot \left( \dfrac{1}{x} \right)+{{e}^{x}}\cdot \left( \dfrac{-1}{{{x}^{2}}} \right)=\dfrac{dt}{dx}$
From left hand side, we are taking the term ${{e}^{x}}$ common and then we have
${{e}^{x}}\left[ \left( \dfrac{1}{x} \right)+\left( \dfrac{-1}{{{x}^{2}}} \right) \right]=\dfrac{dt}{dx}$
Multiplying both sides by$dx$, we get
${{e}^{x}}\left[ \left( \dfrac{1}{x} \right)+\left( \dfrac{-1}{{{x}^{2}}} \right) \right]dx=dt$
The term in left hand side is also written as
${{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx=dt$
Taking the integration on both sides with respective to x, we get
$\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx}=t+c.........(3)$
Where c is the constant of integration.
Now, substitute the value of $t$ which is represented by the equation (2) in the equation (3), we get
\[\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx}={{e}^{x}}\left( \dfrac{1}{x} \right)+c\]
Where c is the constant of integration.
\[\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx}=\dfrac{{{e}^{x}}}{x}+c\]
Where c is the constant of integration.
This is the required final value of the given integral which is represented by equation (1).
Note: Alternatively, the given integral can be evaluated as follow.
\[\begin{align}
& \dfrac{d}{dx}\left[ {{e}^{x}}\cdot \dfrac{1}{x} \right]={{e}^{x}}\dfrac{d}{dx}\left( \dfrac{1}{x} \right)+\dfrac{1}{x}\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}\left( \dfrac{-1}{{{x}^{2}}} \right)+\dfrac{1}{x}{{e}^{x}} \\
& \dfrac{d}{dx}\left[ {{e}^{x}}\cdot \dfrac{1}{x} \right]={{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right] \\
& {{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\cdot \dfrac{1}{x} \right] \\
\end{align}\]
Therefore, by the definition of indefinite integral,
$\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]}dx={{e}^{x}}\left( \dfrac{1}{x} \right)+c$
Complete step-by-step answer:
Let \[I=\int{{{e}^{x}}\left( \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right)dx}..........(1)\]
Comparing the given integral which is represented by the equation (1) with $\int{{{e}^{x}}\left[ f(x)+f'(x) \right]dx}$ , we get
The function $f(x)=\dfrac{1}{x}$ and the differentiation of the function $f(x)$ is $f'(x)=\dfrac{-1}{{{x}^{2}}}$
Let \[{{e}^{x}}f(x)={{e}^{x}}\left( \dfrac{1}{x} \right)=t.........(2)\]
The equation (2) is differentiating with respective to x by using product rule of differentiation and then we have
${{e}^{x}}\cdot \left( \dfrac{-1}{{{x}^{2}}} \right)+\left( \dfrac{1}{x} \right)\cdot {{e}^{x}}=\dfrac{dt}{dx}$
The arrangement of the terms, we get
${{e}^{x}}\cdot \left( \dfrac{1}{x} \right)+{{e}^{x}}\cdot \left( \dfrac{-1}{{{x}^{2}}} \right)=\dfrac{dt}{dx}$
From left hand side, we are taking the term ${{e}^{x}}$ common and then we have
${{e}^{x}}\left[ \left( \dfrac{1}{x} \right)+\left( \dfrac{-1}{{{x}^{2}}} \right) \right]=\dfrac{dt}{dx}$
Multiplying both sides by$dx$, we get
${{e}^{x}}\left[ \left( \dfrac{1}{x} \right)+\left( \dfrac{-1}{{{x}^{2}}} \right) \right]dx=dt$
The term in left hand side is also written as
${{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx=dt$
Taking the integration on both sides with respective to x, we get
$\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx}=t+c.........(3)$
Where c is the constant of integration.
Now, substitute the value of $t$ which is represented by the equation (2) in the equation (3), we get
\[\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx}={{e}^{x}}\left( \dfrac{1}{x} \right)+c\]
Where c is the constant of integration.
\[\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]dx}=\dfrac{{{e}^{x}}}{x}+c\]
Where c is the constant of integration.
This is the required final value of the given integral which is represented by equation (1).
Note: Alternatively, the given integral can be evaluated as follow.
\[\begin{align}
& \dfrac{d}{dx}\left[ {{e}^{x}}\cdot \dfrac{1}{x} \right]={{e}^{x}}\dfrac{d}{dx}\left( \dfrac{1}{x} \right)+\dfrac{1}{x}\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}\left( \dfrac{-1}{{{x}^{2}}} \right)+\dfrac{1}{x}{{e}^{x}} \\
& \dfrac{d}{dx}\left[ {{e}^{x}}\cdot \dfrac{1}{x} \right]={{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right] \\
& {{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]=\dfrac{d}{dx}\left[ {{e}^{x}}\cdot \dfrac{1}{x} \right] \\
\end{align}\]
Therefore, by the definition of indefinite integral,
$\int{{{e}^{x}}\left[ \dfrac{1}{x}-\dfrac{1}{{{x}^{2}}} \right]}dx={{e}^{x}}\left( \dfrac{1}{x} \right)+c$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

