
Evaluate the integral \[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx\]
A) \[20\]
B) \[8\]
C) \[10\]
D) \[18\]
Answer
540.3k+ views
Hint:
We will first check the periodicity of the given integrand. Then we will use the periodic property to simplify the integral. We will then use the definition of the absolute value to simplify it further. We will apply the integration formula of the trigonometric function to find the required value.
Formula used:
For a periodic function \[f(x)\] with period \[a\], \[\int\limits_{ma}^{na} {f(x)dx = (n - m)\int\limits_0^a {f(x)dx} } \]
Complete step by step solution:
We have to evaluate the integral \[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx\].
Here, the lower limit is \[\pi \] and the upper limit is \[10\pi \]. Also, \[f(x) = \left| {\sin x} \right|\].
Let us check the periodicity of the function \[f(x) = \left| {\sin x} \right|\].
We know that \[\sin (\pi + x) = - \sin x\].
Taking modulus on both sides, we get
\[\left| {\sin (\pi + x)} \right| = \left| { - \sin x} \right| = \left| {\sin x} \right|\]
This means that the function \[f(x) = \left| {\sin x} \right|\] is periodic with period \[\pi \].
Now, let us apply the property \[\int\limits_{ma}^{na} {f(x)dx = (n - m)\int\limits_0^a {f(x)dx} } \], where \[f(x)\] is a periodic function with period \[a\].
Comparing the given integral \[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx\] with \[\int\limits_{ma}^{na} {f(x)dx} \], we see that \[m = 1,n = 10,a = \pi \] and \[f(x) = \left| {\sin x} \right|\].
Hence, applying the property to the given integral, we get
\[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = (10 - 1)\int\limits_0^\pi {\left| {\sin x} \right|} dx\]
\[ \Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9\int\limits_0^\pi {\left| {\sin x} \right|} dx\] ……….\[(1)\]
In equation \[(1)\], the integral to be evaluated on the RHS is \[\int\limits_0^\pi {\left| {\sin x} \right|} dx\].
We know that for an absolute value function, \[\left| x \right| = \left\{ \begin{array}{l}x{\text{ if }}x > 0\\0{\text{ if }}x = 0\\ - x{\text{ if }}x < 0\end{array} \right.\]
Using this definition of absolute value function, we have
\[\left| {\sin x} \right| = \left\{ \begin{array}{l}0{\text{ if }}x = 0\\\sin x{\text{ if }}0 < x < \pi \\ - \sin x{\text{ if }}\pi < x < 2\pi \end{array} \right.\]
We observe from the integral \[\int\limits_0^\pi {\left| {\sin x} \right|} dx\] that \[x\] lies between \[0\]and \[\pi \].
So, from the definition of the function \[\left| {\sin x} \right|\], for the interval \[0 < x < \pi \], \[\left| {\sin x} \right| = \sin x\].
Therefore, \[\int\limits_0^\pi {\left| {\sin x} \right|} dx = \int\limits_0^\pi {\sin xdx} \]
Substituting this in equation \[(1)\], we have
\[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9\int\limits_0^\pi {\sin xdx} \] ……….\[(2)\]
We know that \[\int {\sin x} = - \cos x + c\].
Using this in equation \[(2)\], we get
\[ \Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9 \times \left[ { - \cos x} \right]_0^\pi \] …………\[(3)\]
We know that \[\int\limits_a^b {f(x)dx} = f(b) - f(a)\].
Using this in equation \[(3)\], we have
\[ \Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9 \times \left( { - \cos \pi - ( - \cos 0)} \right)\] ……….\[(4)\]
Now, \[\cos \pi = - 1\] and \[\cos 0 = 1\]. Hence, equation \[(4)\] becomes
\[ \Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9 \times \left( 2 \right) = 18\]
Therefore, \[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 18\] and so the correct option is D.
Note:
Trigonometry is a branch of mathematics that helps us to study the relationship between the sides and the angles of a triangle. In practical life, trigonometry is used by cartographers to make maps. It is also used by the aviation and naval industries.
A periodic function is a function that repeats its values at regular intervals. In the above problem, \[\left| {\sin x} \right|\] is a periodic function with period \[\pi \], which means that \[\left| {\sin x} \right|\] repeats its values after every \[\pi \] radians.
We will first check the periodicity of the given integrand. Then we will use the periodic property to simplify the integral. We will then use the definition of the absolute value to simplify it further. We will apply the integration formula of the trigonometric function to find the required value.
Formula used:
For a periodic function \[f(x)\] with period \[a\], \[\int\limits_{ma}^{na} {f(x)dx = (n - m)\int\limits_0^a {f(x)dx} } \]
Complete step by step solution:
We have to evaluate the integral \[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx\].
Here, the lower limit is \[\pi \] and the upper limit is \[10\pi \]. Also, \[f(x) = \left| {\sin x} \right|\].
Let us check the periodicity of the function \[f(x) = \left| {\sin x} \right|\].
We know that \[\sin (\pi + x) = - \sin x\].
Taking modulus on both sides, we get
\[\left| {\sin (\pi + x)} \right| = \left| { - \sin x} \right| = \left| {\sin x} \right|\]
This means that the function \[f(x) = \left| {\sin x} \right|\] is periodic with period \[\pi \].
Now, let us apply the property \[\int\limits_{ma}^{na} {f(x)dx = (n - m)\int\limits_0^a {f(x)dx} } \], where \[f(x)\] is a periodic function with period \[a\].
Comparing the given integral \[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx\] with \[\int\limits_{ma}^{na} {f(x)dx} \], we see that \[m = 1,n = 10,a = \pi \] and \[f(x) = \left| {\sin x} \right|\].
Hence, applying the property to the given integral, we get
\[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = (10 - 1)\int\limits_0^\pi {\left| {\sin x} \right|} dx\]
\[ \Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9\int\limits_0^\pi {\left| {\sin x} \right|} dx\] ……….\[(1)\]
In equation \[(1)\], the integral to be evaluated on the RHS is \[\int\limits_0^\pi {\left| {\sin x} \right|} dx\].
We know that for an absolute value function, \[\left| x \right| = \left\{ \begin{array}{l}x{\text{ if }}x > 0\\0{\text{ if }}x = 0\\ - x{\text{ if }}x < 0\end{array} \right.\]
Using this definition of absolute value function, we have
\[\left| {\sin x} \right| = \left\{ \begin{array}{l}0{\text{ if }}x = 0\\\sin x{\text{ if }}0 < x < \pi \\ - \sin x{\text{ if }}\pi < x < 2\pi \end{array} \right.\]
We observe from the integral \[\int\limits_0^\pi {\left| {\sin x} \right|} dx\] that \[x\] lies between \[0\]and \[\pi \].
So, from the definition of the function \[\left| {\sin x} \right|\], for the interval \[0 < x < \pi \], \[\left| {\sin x} \right| = \sin x\].
Therefore, \[\int\limits_0^\pi {\left| {\sin x} \right|} dx = \int\limits_0^\pi {\sin xdx} \]
Substituting this in equation \[(1)\], we have
\[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9\int\limits_0^\pi {\sin xdx} \] ……….\[(2)\]
We know that \[\int {\sin x} = - \cos x + c\].
Using this in equation \[(2)\], we get
\[ \Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9 \times \left[ { - \cos x} \right]_0^\pi \] …………\[(3)\]
We know that \[\int\limits_a^b {f(x)dx} = f(b) - f(a)\].
Using this in equation \[(3)\], we have
\[ \Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9 \times \left( { - \cos \pi - ( - \cos 0)} \right)\] ……….\[(4)\]
Now, \[\cos \pi = - 1\] and \[\cos 0 = 1\]. Hence, equation \[(4)\] becomes
\[ \Rightarrow \int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 9 \times \left( 2 \right) = 18\]
Therefore, \[\int\limits_\pi ^{10\pi } {\left| {\sin x} \right|} dx = 18\] and so the correct option is D.
Note:
Trigonometry is a branch of mathematics that helps us to study the relationship between the sides and the angles of a triangle. In practical life, trigonometry is used by cartographers to make maps. It is also used by the aviation and naval industries.
A periodic function is a function that repeats its values at regular intervals. In the above problem, \[\left| {\sin x} \right|\] is a periodic function with period \[\pi \], which means that \[\left| {\sin x} \right|\] repeats its values after every \[\pi \] radians.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

