
Evaluate the integral \[\int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} \]
A. $\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2}\log \left( {\sqrt 2 + 1} \right) $
B. $\dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2}\log \left( {\sqrt 2 + 1} \right) $
C. $2\sqrt 2 .\log \left( {\sqrt 2 } \right) $
D.$\dfrac{1}{{\sqrt 2 }}\log \left( {\sqrt 2 } \right) $
Answer
597.6k+ views
Hint: We had to only apply a reduction formula for \[\int {{{\sec }^n}xdx} \]. And after that we can put the limits. Reduction formula for the integration for \[\int {{{\sec }^n}xdx} \] is \[\int {{{\sec }^n}xdx = } \dfrac{{{{\sec }^{n - 1}}\left( x \right)\sin x}}{{n - 1}} + \dfrac{{n - 2}}{{n - 1}}\int {{{\sec }^{n - 2}}\left( x \right)dx} \].
Complete step-by-step answer:
As we know that if we are given the trigonometric function with a power as integer then we can directly apply a reduction formula to find the integration value.
So, applying reduction formula to find the value of \[\int {{{\sec }^3}xdx} \]
\[ \Rightarrow \int {{{\sec }^n}xdx = } \dfrac{{{{\sec }^{n - 1}}\left( x \right)\sin x}}{{n - 1}} + \dfrac{{n - 2}}{{n - 1}}\int {{{\sec }^{n - 2}}\left( x \right)dx} \] (1)
Putting the value of n = 3 in the above equation. \[ \Rightarrow \int {{{\sec }^3}xdx = } \dfrac{{{{\sec }^{3 - 1}}\left( x \right)\sin x}}{{3 - 1}} + \dfrac{{3 - 2}}{{3 - 1}}\int {{{\sec }^{3 - 2}}\left( x \right)dx} \]
Solving above equation.
\[ \Rightarrow \int {{{\sec }^3}xdx = } \dfrac{{{{\sec }^2}\left( x \right)\sin x}}{2} + \dfrac{1}{2}\int {\sec xdx} \] (2)
Now as we know that the integration of \[\sec x\] is \[\log \left| {\sec x + \tan x} \right|\].
So, \[\int {\sec xdx} = \log \left| {\sec x + \tan x} \right|\]
So, putting the value of \[\int {\sec xdx} \]in equation 2.
\[ \Rightarrow \int {{{\sec }^3}xdx = } \dfrac{{{{\sec }^2}\left( x \right)\sin x}}{2} + \dfrac{1}{2}\log \left| {\sec x + \tan x} \right|\]
Now applying limits from 0 to \[\dfrac{\pi }{4}\] to both the sides of the above equation.
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {{{\sec }^2}\left( x \right)\sin x} \right]_0^{\dfrac{\pi }{4}} + \dfrac{1}{2}\left[ {\log \left| {\sec x + \tan x} \right|} \right]_0^{\dfrac{\pi }{4}}\]
Now we had to put upper limits and lower limits in the above equation.
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {{{\sec }^2}\left( {\dfrac{\pi }{4}} \right)\sin \dfrac{\pi }{4} - {{\sec }^2}\left( 0 \right)\sin 0} \right] + \dfrac{1}{2}\left[ {\log \left| {\sec \dfrac{\pi }{4} + \tan \dfrac{\pi }{4}} \right| - \log \left| {\sec 0 + \tan 0} \right|} \right]\]
Now as we know that \[\sec \dfrac{\pi }{4} = \sqrt 2 \], \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\], \[\sec 0 = 1,\sin 0 = 0,\tan \dfrac{\pi }{4} = 1,\tan 0 = 0\] and according to logarithmic identities \[\log \left| a \right| - \log \left| b \right| = \log \left| {\dfrac{a}{b}} \right|\]
So, \[\int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {{{\left( {\sqrt 2 } \right)}^2}\dfrac{1}{{\sqrt 2 }} - {{\left( 1 \right)}^2}0} \right] + \dfrac{1}{2}\left[ {\log \left| {\sqrt 2 + 1} \right| - \log \left| {1 + 0} \right|} \right]\]
Now solving the above equation.
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {\sqrt 2 } \right] + \dfrac{1}{2}\left[ {\log \left| {\dfrac{{\sqrt 2 + 1}}{1}} \right|} \right]\]
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2}\log \left( {\sqrt 2 + 1} \right)\]
Hence, the correct option will be A.
Note:- Whenever we come up with this type of problem then there is also another way to find the solution. We can also apply by parts with the first term as \[u = \sec x\] and the second term as \[v = {\sec ^2}x\]. And then applying by-parts formula that is \[\int {uvdx} = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\left( {\int {vdx} } \right)dx} \right)} } \]. But the easiest and efficient way to find the value of the integral of type \[\int {{{\sec }^n}xdx} \] is by applying a reduction formula.
Complete step-by-step answer:
As we know that if we are given the trigonometric function with a power as integer then we can directly apply a reduction formula to find the integration value.
So, applying reduction formula to find the value of \[\int {{{\sec }^3}xdx} \]
\[ \Rightarrow \int {{{\sec }^n}xdx = } \dfrac{{{{\sec }^{n - 1}}\left( x \right)\sin x}}{{n - 1}} + \dfrac{{n - 2}}{{n - 1}}\int {{{\sec }^{n - 2}}\left( x \right)dx} \] (1)
Putting the value of n = 3 in the above equation. \[ \Rightarrow \int {{{\sec }^3}xdx = } \dfrac{{{{\sec }^{3 - 1}}\left( x \right)\sin x}}{{3 - 1}} + \dfrac{{3 - 2}}{{3 - 1}}\int {{{\sec }^{3 - 2}}\left( x \right)dx} \]
Solving above equation.
\[ \Rightarrow \int {{{\sec }^3}xdx = } \dfrac{{{{\sec }^2}\left( x \right)\sin x}}{2} + \dfrac{1}{2}\int {\sec xdx} \] (2)
Now as we know that the integration of \[\sec x\] is \[\log \left| {\sec x + \tan x} \right|\].
So, \[\int {\sec xdx} = \log \left| {\sec x + \tan x} \right|\]
So, putting the value of \[\int {\sec xdx} \]in equation 2.
\[ \Rightarrow \int {{{\sec }^3}xdx = } \dfrac{{{{\sec }^2}\left( x \right)\sin x}}{2} + \dfrac{1}{2}\log \left| {\sec x + \tan x} \right|\]
Now applying limits from 0 to \[\dfrac{\pi }{4}\] to both the sides of the above equation.
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {{{\sec }^2}\left( x \right)\sin x} \right]_0^{\dfrac{\pi }{4}} + \dfrac{1}{2}\left[ {\log \left| {\sec x + \tan x} \right|} \right]_0^{\dfrac{\pi }{4}}\]
Now we had to put upper limits and lower limits in the above equation.
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {{{\sec }^2}\left( {\dfrac{\pi }{4}} \right)\sin \dfrac{\pi }{4} - {{\sec }^2}\left( 0 \right)\sin 0} \right] + \dfrac{1}{2}\left[ {\log \left| {\sec \dfrac{\pi }{4} + \tan \dfrac{\pi }{4}} \right| - \log \left| {\sec 0 + \tan 0} \right|} \right]\]
Now as we know that \[\sec \dfrac{\pi }{4} = \sqrt 2 \], \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\], \[\sec 0 = 1,\sin 0 = 0,\tan \dfrac{\pi }{4} = 1,\tan 0 = 0\] and according to logarithmic identities \[\log \left| a \right| - \log \left| b \right| = \log \left| {\dfrac{a}{b}} \right|\]
So, \[\int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {{{\left( {\sqrt 2 } \right)}^2}\dfrac{1}{{\sqrt 2 }} - {{\left( 1 \right)}^2}0} \right] + \dfrac{1}{2}\left[ {\log \left| {\sqrt 2 + 1} \right| - \log \left| {1 + 0} \right|} \right]\]
Now solving the above equation.
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{2}\left[ {\sqrt 2 } \right] + \dfrac{1}{2}\left[ {\log \left| {\dfrac{{\sqrt 2 + 1}}{1}} \right|} \right]\]
\[ \Rightarrow \int\limits_0^{\dfrac{\pi }{4}} {{{\sec }^3}xdx} = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2}\log \left( {\sqrt 2 + 1} \right)\]
Hence, the correct option will be A.
Note:- Whenever we come up with this type of problem then there is also another way to find the solution. We can also apply by parts with the first term as \[u = \sec x\] and the second term as \[v = {\sec ^2}x\]. And then applying by-parts formula that is \[\int {uvdx} = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\left( {\int {vdx} } \right)dx} \right)} } \]. But the easiest and efficient way to find the value of the integral of type \[\int {{{\sec }^n}xdx} \] is by applying a reduction formula.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

