
How do you evaluate the integral $\int{\dfrac{{{x}^{2}}}{{{\left( 4+{{x}^{2}} \right)}^{2}}}dx}$?
Answer
555k+ views
Hint: For solving the given integral we have to substitute $x=2\tan \theta $ so that in the denominator it will become $4\left( 1+{{\tan }^{2}}\theta \right)$ and we will apply the trigonometric $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $. Then we will obtain the integral in the form of \[{{\sin }^{2}}\theta \], which can be solved by using the identity $\cos 2\theta =1-2{{\sin }^{2}}\theta $. Finally, we will back substitute $\theta $ in the form of $x$ to get the final result.
Complete step-by-step answer:
Let us write the integral given in the question as
\[I=\int{\dfrac{{{x}^{2}}}{{{\left( 4+{{x}^{2}} \right)}^{2}}}dx}\]
Let us substitute
$x=2\tan \theta ........(i)$
Differentiating both sides
\[\begin{align}
& \Rightarrow \dfrac{dx}{d\theta }=2{{\sec }^{2}}\theta \\
& \Rightarrow dx=2{{\sec }^{2}}\theta d\theta ........(ii) \\
\end{align}\]
Substituting (i) and (ii) in the above integral, we get
\[\begin{align}
& \Rightarrow I=\int{\dfrac{{{\left( 2\tan \theta \right)}^{2}}}{{{\left( 4+{{\left( 2\tan \theta \right)}^{2}} \right)}^{2}}}\left( 2{{\sec }^{2}}\theta d\theta \right)} \\
& \Rightarrow I=\int{\dfrac{4{{\tan }^{2}}\theta \left( 2{{\sec }^{2}}\theta \right)}{{{\left( 4+4{{\tan }^{2}}\theta \right)}^{2}}}d\theta } \\
& \Rightarrow I=\int{\dfrac{8{{\tan }^{2}}\theta {{\sec }^{2}}\theta }{{{4}^{2}}{{\left( 1+{{\tan }^{2}}\theta \right)}^{2}}}d\theta } \\
& \Rightarrow I=\dfrac{1}{2}\int{\dfrac{{{\tan }^{2}}\theta {{\sec }^{2}}\theta }{{{\left( 1+{{\tan }^{2}}\theta \right)}^{2}}}d\theta } \\
\end{align}\]
Now, we know the trigonometric identity $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $. Putting this above, we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\int{\dfrac{{{\tan }^{2}}\theta {{\sec }^{2}}\theta }{{{\left( {{\sec }^{2}}\theta \right)}^{2}}}d\theta } \\
& \Rightarrow I=\dfrac{1}{2}\int{\dfrac{{{\tan }^{2}}\theta }{{{\sec }^{2}}\theta }d\theta } \\
\end{align}\]
Now, we put $\sec \theta =\dfrac{1}{\cos \theta }$ in the above integral to get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\int{\dfrac{{{\tan }^{2}}\theta }{\dfrac{1}{{{\cos }^{2}}\theta }}d\theta } \\
& \Rightarrow I=\dfrac{1}{2}\int{{{\tan }^{2}}\theta {{\cos }^{2}}\theta d\theta } \\
\end{align}\]
Putting $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\int{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }{{\cos }^{2}}\theta d\theta } \\
& \Rightarrow I=\dfrac{1}{2}\int{{{\sin }^{2}}\theta d\theta } \\
\end{align}\]
Now, we know that
$\begin{align}
& \Rightarrow \cos 2\theta =1-2{{\sin }^{2}}\theta \\
& \Rightarrow 2{{\sin }^{2}}\theta =1-\cos 2\theta \\
& \Rightarrow {{\sin }^{2}}\theta =\dfrac{1-\cos 2\theta }{2} \\
\end{align}$
Putting this in the above integral, we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\int{\left( \dfrac{1-\cos 2\theta }{2} \right)d\theta } \\
& \Rightarrow I=\dfrac{1}{4}\int{\left( 1-\cos 2\theta \right)d\theta } \\
& \Rightarrow I=\dfrac{1}{4}\left( \int{d\theta }-\int{\cos 2\theta d\theta } \right) \\
& \Rightarrow I=\dfrac{1}{4}\left( \theta -\dfrac{\sin 2\theta }{2} \right)+C \\
\end{align}\]
Now, we know the trigonometric identity $\sin 2\theta =\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }$. Putting this above, we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{4}\left( \theta -\dfrac{2\tan \theta }{2\left( 1+{{\tan }^{2}}\theta \right)} \right)+C \\
& \Rightarrow I=\dfrac{1}{4}\left( \theta -\dfrac{\tan \theta }{\left( 1+{{\tan }^{2}}\theta \right)} \right)+C.......(iii) \\
\end{align}\]
Now, from (i) we have
$\begin{align}
& \Rightarrow x=2\tan \theta \\
& \Rightarrow \tan \theta =\dfrac{x}{2}........(iv) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{x}{2} \right).......(v) \\
\end{align}$
Putting (iv) and (v) in (iii) we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{4}\left( {{\tan }^{-1}}\left( \dfrac{x}{2} \right)-\dfrac{\dfrac{x}{2}}{\left( 1+{{\left( \dfrac{x}{2} \right)}^{2}} \right)} \right)+C. \\
& \Rightarrow I=\dfrac{1}{4}\left( {{\tan }^{-1}}\left( \dfrac{x}{2} \right)-\dfrac{x}{2\left( 1+\dfrac{{{x}^{2}}}{4} \right)} \right)+C \\
& \Rightarrow I=\dfrac{1}{4}\left( {{\tan }^{-1}}\left( \dfrac{x}{2} \right)-\dfrac{2x}{\left( {{x}^{2}}+4 \right)} \right)+C \\
\end{align}\]
Hence, this is the required integration.
Note: Do not forget to back substitute the variable $\theta $ in terms of $x$ in the final step, that is, $\tan \theta =\dfrac{x}{2}$. This is necessary since $\theta $ is our assumed variable, but the actual variable in the given equation is $x$. Also, we can solve this question by splitting the function inside the given integral, $\dfrac{{{x}^{2}}}{{{\left( 4+{{x}^{2}} \right)}^{2}}}$ into two fractions. For this, we need to add and subtract $4$ in the denominator to get $\dfrac{4+{{x}^{2}}-4}{{{\left( 4+{{x}^{2}} \right)}^{2}}}=\dfrac{1}{\left( 4+{{x}^{2}} \right)}-\dfrac{4}{{{\left( 4+{{x}^{2}} \right)}^{2}}}$. Lastly, since the given integral is indefinite, do not forget to add a constant after performing the integration.
Complete step-by-step answer:
Let us write the integral given in the question as
\[I=\int{\dfrac{{{x}^{2}}}{{{\left( 4+{{x}^{2}} \right)}^{2}}}dx}\]
Let us substitute
$x=2\tan \theta ........(i)$
Differentiating both sides
\[\begin{align}
& \Rightarrow \dfrac{dx}{d\theta }=2{{\sec }^{2}}\theta \\
& \Rightarrow dx=2{{\sec }^{2}}\theta d\theta ........(ii) \\
\end{align}\]
Substituting (i) and (ii) in the above integral, we get
\[\begin{align}
& \Rightarrow I=\int{\dfrac{{{\left( 2\tan \theta \right)}^{2}}}{{{\left( 4+{{\left( 2\tan \theta \right)}^{2}} \right)}^{2}}}\left( 2{{\sec }^{2}}\theta d\theta \right)} \\
& \Rightarrow I=\int{\dfrac{4{{\tan }^{2}}\theta \left( 2{{\sec }^{2}}\theta \right)}{{{\left( 4+4{{\tan }^{2}}\theta \right)}^{2}}}d\theta } \\
& \Rightarrow I=\int{\dfrac{8{{\tan }^{2}}\theta {{\sec }^{2}}\theta }{{{4}^{2}}{{\left( 1+{{\tan }^{2}}\theta \right)}^{2}}}d\theta } \\
& \Rightarrow I=\dfrac{1}{2}\int{\dfrac{{{\tan }^{2}}\theta {{\sec }^{2}}\theta }{{{\left( 1+{{\tan }^{2}}\theta \right)}^{2}}}d\theta } \\
\end{align}\]
Now, we know the trigonometric identity $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $. Putting this above, we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\int{\dfrac{{{\tan }^{2}}\theta {{\sec }^{2}}\theta }{{{\left( {{\sec }^{2}}\theta \right)}^{2}}}d\theta } \\
& \Rightarrow I=\dfrac{1}{2}\int{\dfrac{{{\tan }^{2}}\theta }{{{\sec }^{2}}\theta }d\theta } \\
\end{align}\]
Now, we put $\sec \theta =\dfrac{1}{\cos \theta }$ in the above integral to get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\int{\dfrac{{{\tan }^{2}}\theta }{\dfrac{1}{{{\cos }^{2}}\theta }}d\theta } \\
& \Rightarrow I=\dfrac{1}{2}\int{{{\tan }^{2}}\theta {{\cos }^{2}}\theta d\theta } \\
\end{align}\]
Putting $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\int{\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }{{\cos }^{2}}\theta d\theta } \\
& \Rightarrow I=\dfrac{1}{2}\int{{{\sin }^{2}}\theta d\theta } \\
\end{align}\]
Now, we know that
$\begin{align}
& \Rightarrow \cos 2\theta =1-2{{\sin }^{2}}\theta \\
& \Rightarrow 2{{\sin }^{2}}\theta =1-\cos 2\theta \\
& \Rightarrow {{\sin }^{2}}\theta =\dfrac{1-\cos 2\theta }{2} \\
\end{align}$
Putting this in the above integral, we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\int{\left( \dfrac{1-\cos 2\theta }{2} \right)d\theta } \\
& \Rightarrow I=\dfrac{1}{4}\int{\left( 1-\cos 2\theta \right)d\theta } \\
& \Rightarrow I=\dfrac{1}{4}\left( \int{d\theta }-\int{\cos 2\theta d\theta } \right) \\
& \Rightarrow I=\dfrac{1}{4}\left( \theta -\dfrac{\sin 2\theta }{2} \right)+C \\
\end{align}\]
Now, we know the trigonometric identity $\sin 2\theta =\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }$. Putting this above, we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{4}\left( \theta -\dfrac{2\tan \theta }{2\left( 1+{{\tan }^{2}}\theta \right)} \right)+C \\
& \Rightarrow I=\dfrac{1}{4}\left( \theta -\dfrac{\tan \theta }{\left( 1+{{\tan }^{2}}\theta \right)} \right)+C.......(iii) \\
\end{align}\]
Now, from (i) we have
$\begin{align}
& \Rightarrow x=2\tan \theta \\
& \Rightarrow \tan \theta =\dfrac{x}{2}........(iv) \\
& \Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{x}{2} \right).......(v) \\
\end{align}$
Putting (iv) and (v) in (iii) we get
\[\begin{align}
& \Rightarrow I=\dfrac{1}{4}\left( {{\tan }^{-1}}\left( \dfrac{x}{2} \right)-\dfrac{\dfrac{x}{2}}{\left( 1+{{\left( \dfrac{x}{2} \right)}^{2}} \right)} \right)+C. \\
& \Rightarrow I=\dfrac{1}{4}\left( {{\tan }^{-1}}\left( \dfrac{x}{2} \right)-\dfrac{x}{2\left( 1+\dfrac{{{x}^{2}}}{4} \right)} \right)+C \\
& \Rightarrow I=\dfrac{1}{4}\left( {{\tan }^{-1}}\left( \dfrac{x}{2} \right)-\dfrac{2x}{\left( {{x}^{2}}+4 \right)} \right)+C \\
\end{align}\]
Hence, this is the required integration.
Note: Do not forget to back substitute the variable $\theta $ in terms of $x$ in the final step, that is, $\tan \theta =\dfrac{x}{2}$. This is necessary since $\theta $ is our assumed variable, but the actual variable in the given equation is $x$. Also, we can solve this question by splitting the function inside the given integral, $\dfrac{{{x}^{2}}}{{{\left( 4+{{x}^{2}} \right)}^{2}}}$ into two fractions. For this, we need to add and subtract $4$ in the denominator to get $\dfrac{4+{{x}^{2}}-4}{{{\left( 4+{{x}^{2}} \right)}^{2}}}=\dfrac{1}{\left( 4+{{x}^{2}} \right)}-\dfrac{4}{{{\left( 4+{{x}^{2}} \right)}^{2}}}$. Lastly, since the given integral is indefinite, do not forget to add a constant after performing the integration.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

