
How do you evaluate the integral $\int{\dfrac{1}{1-\sin x}dx}$ from $0$ to $\dfrac{\pi }{2}$?
Answer
521.1k+ views
Hint: In this problem we need to calculate the definite integral value of the given function in the given range or limits. For this we need to first calculate the indefinite integral value of the given function. In the given function we can observe that the trigonometric ratio $\sin x$ in the denominator. So, we will use a substitution method to solve the indefinite integral value. In this method we are going to use the substitution $u=\tan \left( \dfrac{x}{2} \right)$ and calculate the differentiation of the substitution. Now we will convert the given function into simplified form by using the substitution value and some trigonometric formulas. Now we will simplify the equation and apply the integration formulas to get the value of indefinite integral value. After that we will apply the limits for the calculated value to get the required result.
Complete step by step solution:
Given that, $\int{\dfrac{1}{1-\sin x}dx}$.
Take the substitution $u=\tan \left( \dfrac{x}{2} \right)$.
Differentiating the above value with respect to $x$, then we will get
$\Rightarrow du=\dfrac{1}{2}{{\sec }^{2}}\left( \dfrac{x}{2} \right)dx$
From the trigonometric identity ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$, we can write the above value as
$\begin{align}
& \Rightarrow du=\dfrac{1}{2}\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx \\
& \Rightarrow du=\dfrac{1}{2}\left( 1+{{u}^{2}} \right)dx \\
\end{align}$
In the trigonometry we have the formula $\sin \theta =\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }$. From this formula we can write
$\Rightarrow \sin x=\dfrac{2u}{1+{{u}^{2}}}$
Substituting all the values we have in the given function, then we will get
$\Rightarrow \int{\dfrac{1}{1-\sin x}dx}=\int{\dfrac{1}{1-\dfrac{2u}{1+{{u}^{2}}}}\left( \dfrac{2du}{1+{{u}^{2}}} \right)}$
Simplifying the above equation, then we will get
$\begin{align}
& \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=\int{\dfrac{1+{{u}^{2}}}{1+{{u}^{2}}-2u}\times \dfrac{2}{1+{{u}^{2}}}du} \\
& \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=\int{\dfrac{2}{{{\left( u-1 \right)}^{2}}}du} \\
\end{align}$
Using the integration formula $\int{\dfrac{1}{{{x}^{2}}}dx}=-\dfrac{1}{x}+C$ in the above equation, then we will get
$\begin{align}
& \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=-\dfrac{2}{u-1}+C \\
& \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=-\dfrac{2}{\tan \left( \dfrac{x}{2} \right)-1}+C \\
\end{align}$
The definite integral for the above equation will be
$\begin{align}
& \Rightarrow \int\limits_{0}^{y}{\dfrac{1}{1-\sin x}dx}=\left[ -\dfrac{2}{\tan \left( \dfrac{x}{2} \right)-1} \right]_{0}^{y} \\
& \Rightarrow \int\limits_{0}^{y}{\dfrac{1}{1-\sin x}dx}=\left( -\dfrac{2}{\tan \left( \dfrac{y}{2} \right)-1} \right)-\left( -\dfrac{2}{0-1} \right) \\
& \Rightarrow \int\limits_{0}^{y}{\dfrac{1}{1-\sin x}dx}=-2-\dfrac{2}{\tan \left( \dfrac{y}{2} \right)-1} \\
\end{align}$
Let us check the value of above integral when $y=\dfrac{\pi }{2}$, by substituting $y=\dfrac{\pi }{2}$ in the above equation, then we will get
$\Rightarrow -2-\dfrac{2}{\tan \left( \dfrac{\dfrac{\pi }{2}}{2} \right)-1}=-2-\dfrac{2}{\tan \left( \dfrac{\pi }{4} \right)-1}$
We know that the value of $\tan \left( \dfrac{\pi }{4} \right)=1$, then the above equation is modified as
$\begin{align}
& \Rightarrow -2-\dfrac{2}{\tan \left( \dfrac{\pi }{4} \right)-1}=-2-\dfrac{2}{1-1} \\
& \Rightarrow -2-\dfrac{2}{\tan \left( \dfrac{\pi }{4} \right)-1}=-2-\dfrac{2}{0} \\
\end{align}$
Here we have the infinite form which is $\dfrac{2}{0}$. We can’t divide the any number with zero. So we can write that
$\Rightarrow \displaystyle \lim_{y \to \dfrac{\pi }{2}}\left( -2-\dfrac{2}{\tan \left( \dfrac{y}{2} \right)-1} \right)=-\infty $
Hence the above integral is divergent. So, we can’t find the integration of the given function.
Note: For this problem we have got the divergent integral, so we have terminated the process. But if we don’t get the divergent integral then we need to continue the process by applying the integral to the calculated value and simplifying the equation.
Complete step by step solution:
Given that, $\int{\dfrac{1}{1-\sin x}dx}$.
Take the substitution $u=\tan \left( \dfrac{x}{2} \right)$.
Differentiating the above value with respect to $x$, then we will get
$\Rightarrow du=\dfrac{1}{2}{{\sec }^{2}}\left( \dfrac{x}{2} \right)dx$
From the trigonometric identity ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$, we can write the above value as
$\begin{align}
& \Rightarrow du=\dfrac{1}{2}\left( 1+{{\tan }^{2}}\dfrac{x}{2} \right)dx \\
& \Rightarrow du=\dfrac{1}{2}\left( 1+{{u}^{2}} \right)dx \\
\end{align}$
In the trigonometry we have the formula $\sin \theta =\dfrac{2\tan \theta }{1+{{\tan }^{2}}\theta }$. From this formula we can write
$\Rightarrow \sin x=\dfrac{2u}{1+{{u}^{2}}}$
Substituting all the values we have in the given function, then we will get
$\Rightarrow \int{\dfrac{1}{1-\sin x}dx}=\int{\dfrac{1}{1-\dfrac{2u}{1+{{u}^{2}}}}\left( \dfrac{2du}{1+{{u}^{2}}} \right)}$
Simplifying the above equation, then we will get
$\begin{align}
& \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=\int{\dfrac{1+{{u}^{2}}}{1+{{u}^{2}}-2u}\times \dfrac{2}{1+{{u}^{2}}}du} \\
& \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=\int{\dfrac{2}{{{\left( u-1 \right)}^{2}}}du} \\
\end{align}$
Using the integration formula $\int{\dfrac{1}{{{x}^{2}}}dx}=-\dfrac{1}{x}+C$ in the above equation, then we will get
$\begin{align}
& \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=-\dfrac{2}{u-1}+C \\
& \Rightarrow \int{\dfrac{1}{1-\sin x}dx}=-\dfrac{2}{\tan \left( \dfrac{x}{2} \right)-1}+C \\
\end{align}$
The definite integral for the above equation will be
$\begin{align}
& \Rightarrow \int\limits_{0}^{y}{\dfrac{1}{1-\sin x}dx}=\left[ -\dfrac{2}{\tan \left( \dfrac{x}{2} \right)-1} \right]_{0}^{y} \\
& \Rightarrow \int\limits_{0}^{y}{\dfrac{1}{1-\sin x}dx}=\left( -\dfrac{2}{\tan \left( \dfrac{y}{2} \right)-1} \right)-\left( -\dfrac{2}{0-1} \right) \\
& \Rightarrow \int\limits_{0}^{y}{\dfrac{1}{1-\sin x}dx}=-2-\dfrac{2}{\tan \left( \dfrac{y}{2} \right)-1} \\
\end{align}$
Let us check the value of above integral when $y=\dfrac{\pi }{2}$, by substituting $y=\dfrac{\pi }{2}$ in the above equation, then we will get
$\Rightarrow -2-\dfrac{2}{\tan \left( \dfrac{\dfrac{\pi }{2}}{2} \right)-1}=-2-\dfrac{2}{\tan \left( \dfrac{\pi }{4} \right)-1}$
We know that the value of $\tan \left( \dfrac{\pi }{4} \right)=1$, then the above equation is modified as
$\begin{align}
& \Rightarrow -2-\dfrac{2}{\tan \left( \dfrac{\pi }{4} \right)-1}=-2-\dfrac{2}{1-1} \\
& \Rightarrow -2-\dfrac{2}{\tan \left( \dfrac{\pi }{4} \right)-1}=-2-\dfrac{2}{0} \\
\end{align}$
Here we have the infinite form which is $\dfrac{2}{0}$. We can’t divide the any number with zero. So we can write that
$\Rightarrow \displaystyle \lim_{y \to \dfrac{\pi }{2}}\left( -2-\dfrac{2}{\tan \left( \dfrac{y}{2} \right)-1} \right)=-\infty $
Hence the above integral is divergent. So, we can’t find the integration of the given function.
Note: For this problem we have got the divergent integral, so we have terminated the process. But if we don’t get the divergent integral then we need to continue the process by applying the integral to the calculated value and simplifying the equation.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

