
Evaluate the integral $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Answer
512.1k+ views
Hint: In this problem to find integral $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$ we will convert sine function to cosine function using trigonometric formula. After converting sine to cosine we will use integration formula to compute the integral $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Complete step by step answer:
Let $I=\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Now we will go to use conversion from sine function to cosine.
Since $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$
$\Rightarrow I=\int{{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)}\text{ }dx.$
Since ${{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)=\dfrac{\pi }{2}-x$
$\Rightarrow I=\int{\left( \dfrac{\pi }{2}-x \right)}\text{ }dx.$
$\Rightarrow I=\int{\dfrac{\pi }{2}}\text{ }dx-\int{x\text{ }dx}.$
$\Rightarrow I=\dfrac{\pi }{2}\int{1}\text{ }dx-\int{x\text{ }dx}.$
Since$\int{{{x}^{n}}\text{ }dx=\dfrac{{{x}^{n+1}}}{n+1}+c}$,
And$\int{\text{1 }dx=x+c}$, where c is integral constant
$\Rightarrow I=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Hence, $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Note:
In this problem, one knows all the basic integration formulas and how to convert from sine function to cosine function using trigonometric formulas. Also, one should know that composition of inverse function at its original function is identity function.
Complete step by step answer:
Let $I=\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Now we will go to use conversion from sine function to cosine.
Since $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$
$\Rightarrow I=\int{{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)}\text{ }dx.$
Since ${{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)=\dfrac{\pi }{2}-x$
$\Rightarrow I=\int{\left( \dfrac{\pi }{2}-x \right)}\text{ }dx.$
$\Rightarrow I=\int{\dfrac{\pi }{2}}\text{ }dx-\int{x\text{ }dx}.$
$\Rightarrow I=\dfrac{\pi }{2}\int{1}\text{ }dx-\int{x\text{ }dx}.$
Since$\int{{{x}^{n}}\text{ }dx=\dfrac{{{x}^{n+1}}}{n+1}+c}$,
And$\int{\text{1 }dx=x+c}$, where c is integral constant
$\Rightarrow I=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Hence, $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Note:
In this problem, one knows all the basic integration formulas and how to convert from sine function to cosine function using trigonometric formulas. Also, one should know that composition of inverse function at its original function is identity function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
A deep narrow valley with steep sides formed as a result class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
