
Evaluate the integral $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Answer
591k+ views
Hint: In this problem to find integral $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$ we will convert sine function to cosine function using trigonometric formula. After converting sine to cosine we will use integration formula to compute the integral $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Complete step by step answer:
Let $I=\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Now we will go to use conversion from sine function to cosine.
Since $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$
$\Rightarrow I=\int{{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)}\text{ }dx.$
Since ${{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)=\dfrac{\pi }{2}-x$
$\Rightarrow I=\int{\left( \dfrac{\pi }{2}-x \right)}\text{ }dx.$
$\Rightarrow I=\int{\dfrac{\pi }{2}}\text{ }dx-\int{x\text{ }dx}.$
$\Rightarrow I=\dfrac{\pi }{2}\int{1}\text{ }dx-\int{x\text{ }dx}.$
Since$\int{{{x}^{n}}\text{ }dx=\dfrac{{{x}^{n+1}}}{n+1}+c}$,
And$\int{\text{1 }dx=x+c}$, where c is integral constant
$\Rightarrow I=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Hence, $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Note:
In this problem, one knows all the basic integration formulas and how to convert from sine function to cosine function using trigonometric formulas. Also, one should know that composition of inverse function at its original function is identity function.
Complete step by step answer:
Let $I=\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Now we will go to use conversion from sine function to cosine.
Since $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$
$\Rightarrow I=\int{{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)}\text{ }dx.$
Since ${{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)=\dfrac{\pi }{2}-x$
$\Rightarrow I=\int{\left( \dfrac{\pi }{2}-x \right)}\text{ }dx.$
$\Rightarrow I=\int{\dfrac{\pi }{2}}\text{ }dx-\int{x\text{ }dx}.$
$\Rightarrow I=\dfrac{\pi }{2}\int{1}\text{ }dx-\int{x\text{ }dx}.$
Since$\int{{{x}^{n}}\text{ }dx=\dfrac{{{x}^{n+1}}}{n+1}+c}$,
And$\int{\text{1 }dx=x+c}$, where c is integral constant
$\Rightarrow I=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Hence, $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Note:
In this problem, one knows all the basic integration formulas and how to convert from sine function to cosine function using trigonometric formulas. Also, one should know that composition of inverse function at its original function is identity function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

