
Evaluate the integral $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Answer
576.9k+ views
Hint: In this problem to find integral $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$ we will convert sine function to cosine function using trigonometric formula. After converting sine to cosine we will use integration formula to compute the integral $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Complete step by step answer:
Let $I=\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Now we will go to use conversion from sine function to cosine.
Since $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$
$\Rightarrow I=\int{{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)}\text{ }dx.$
Since ${{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)=\dfrac{\pi }{2}-x$
$\Rightarrow I=\int{\left( \dfrac{\pi }{2}-x \right)}\text{ }dx.$
$\Rightarrow I=\int{\dfrac{\pi }{2}}\text{ }dx-\int{x\text{ }dx}.$
$\Rightarrow I=\dfrac{\pi }{2}\int{1}\text{ }dx-\int{x\text{ }dx}.$
Since$\int{{{x}^{n}}\text{ }dx=\dfrac{{{x}^{n+1}}}{n+1}+c}$,
And$\int{\text{1 }dx=x+c}$, where c is integral constant
$\Rightarrow I=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Hence, $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Note:
In this problem, one knows all the basic integration formulas and how to convert from sine function to cosine function using trigonometric formulas. Also, one should know that composition of inverse function at its original function is identity function.
Complete step by step answer:
Let $I=\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx.$
Now we will go to use conversion from sine function to cosine.
Since $\sin x=\cos \left( \dfrac{\pi }{2}-x \right)$
$\Rightarrow I=\int{{{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)}\text{ }dx.$
Since ${{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{2}-x \right) \right)=\dfrac{\pi }{2}-x$
$\Rightarrow I=\int{\left( \dfrac{\pi }{2}-x \right)}\text{ }dx.$
$\Rightarrow I=\int{\dfrac{\pi }{2}}\text{ }dx-\int{x\text{ }dx}.$
$\Rightarrow I=\dfrac{\pi }{2}\int{1}\text{ }dx-\int{x\text{ }dx}.$
Since$\int{{{x}^{n}}\text{ }dx=\dfrac{{{x}^{n+1}}}{n+1}+c}$,
And$\int{\text{1 }dx=x+c}$, where c is integral constant
$\Rightarrow I=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Hence, $\int{{{\cos }^{-1}}\left( \sin x \right)}\text{ }dx=\dfrac{\pi }{2}x-\dfrac{{{x}^{2}}}{2}+c.$
Note:
In this problem, one knows all the basic integration formulas and how to convert from sine function to cosine function using trigonometric formulas. Also, one should know that composition of inverse function at its original function is identity function.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

