
Evaluate the integral $\int {\sqrt {{x^2} - 1} } dx$.
Answer
558.6k+ views
Hint: To solve this problem, we must know how to integrate by parts and the formula for this is $\int {udv} = uv - \int {vdu} $. You must be clear in the concept indefinite integral because the limits were not given in this problem. So, you must know how to deal with indefinite integral. Some of the other formula you need to know is and
$\int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx$$ = $$\log \left( {x + \sqrt {{x^2} - 1} } \right) + c$
Complete step by step answer:
Let us consider the given problem,
$\int {\sqrt {{x^2} - 1} } dx$
Take $I = \sqrt {{x^2} - 1} dx$, integrate this by parts and formula for this is $\int {udv} = uv - \int {vdu} $, let’s take $u = \sqrt {{x^2} - 1} $ and to find $du$ we need to differentiate $u$,
$du = \dfrac{1}{{2\sqrt {{x^2} - 1} }}\left( {2x - 0} \right)dx = \dfrac{x}{{\sqrt {{x^2} - 1} }}$
Let’s take $dv = dx$, if we integrate this we get $v$,
$v = x$
Substituting the value of $u$, $du$, $v$ and $dv$ we get,
$
\Rightarrow I = x\sqrt {{x^2} - 1} - \int x \left( {\dfrac{x}{{\sqrt {{x^2} - 1} }}} \right)dx \\
\Rightarrow I = x\sqrt {{x^2} - 1} - \int {\dfrac{{{x^2}}}{{\sqrt {{x^2} - 1} }}} dx \\
$
Add and subtract with $1$ in the second part of the above equation we get,
$ \Rightarrow I = x\sqrt {{x^2} - 1} - \int {\dfrac{{{x^2} - 1 + 1}}{{\sqrt {{x^2} - 1} }}} dx$
We are writing the above equation as,
$ \Rightarrow I = x\sqrt {{x^2} - 1} - \int {\left( {\dfrac{{{x^2} - 1}}{{\sqrt {{x^2} - 1} }} + \dfrac{1}{{\sqrt {{x^2} - 1} }}} \right)} dx$
$ \Rightarrow \int {\dfrac{{{x^2} - 1}}{{\sqrt {{x^2} - 1} }}} $ becomes $\int {\dfrac{{{x^2} - 1}}{{\sqrt {{x^2} - 1} }} = \int {\dfrac{{\sqrt {{x^2} - 1} \times \sqrt {{x^2} - 1} }}{{\sqrt {{x^2} - 1} }}} } = \int {\sqrt {{x^2} - 1} } $, the above equation becomes,
$ \Rightarrow I = x\sqrt {{x^2} - 1} - \int {\sqrt {{x^2} - 1} } dx - \int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx$
We know that, $I = \sqrt {{x^2} - 1} dx$ and $\int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx$$ = $$\log \left( {x + \sqrt {{x^2} - 1} } \right) + c$
$ \Rightarrow I = x\sqrt {{x^2} - 1} - I - \log \left( {x + \sqrt {{x^2} - 1} } \right) + c$
$ \Rightarrow I + I = x\sqrt {{x^2} - 1} - \log \left( {x + \sqrt {{x^2} - 1} } \right) + c$
$ \Rightarrow 2I = x\sqrt {{x^2} - 1} - \log \left( {x + \sqrt {{x^2} - 1} } \right) + c$
$ \Rightarrow I = \dfrac{x}{2}\sqrt {{x^2} - 1} - \dfrac{1}{2}\log \left( {x + \sqrt {{x^2} - 1} } \right) + \dfrac{c}{2}$
This is our required solution.
Additional information: This problem is one of the difficult problems in indefinite integral because only when you know the formula for the integral, which I have mentioned in the note, you are able to solve this problem. And integrating by parts method is a common method which is used most common in major problems in integration.
Note: To prove $\int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx$$ = $$\log \left( {x + \sqrt {{x^2} - 1} } \right) + c$, take $u = x + \sqrt {{x^2} - {1^2}} $ and by differentiating this we get $ \Rightarrow du = \left( {1 + \dfrac{{2x}}{{2\sqrt {{x^2} - {1^2}} }}} \right)dx$
$ \Rightarrow du = \left( {\dfrac{{\sqrt {{x^2} - {1^2}} + x}}{{\sqrt {{x^2} - {1^2}} }}} \right)dx$
$ \Rightarrow dx = \left( {\dfrac{{\sqrt {{x^2} - {1^2}} }}{{\sqrt {{x^2} - {1^2}} + x}}} \right)du$
Substituting the value of $dx$ and $u$ in $I$ we get,
$ \Rightarrow I = \int {\left( {\dfrac{1}{{\sqrt {{x^2} - 1} }} \times \dfrac{{\sqrt {{x^2} - {1^2}} }}{u}} \right)} du$
$ \Rightarrow I = \int {\dfrac{{du}}{u}} $
$ I = \log u + c$, we already know that $u = x + \sqrt {{x^2} - {1^2}} $ so in the question we directly wrote this integral. Know this value so that you are able to save time in the examination.
$\int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx$$ = $$\log \left( {x + \sqrt {{x^2} - 1} } \right) + c$
Complete step by step answer:
Let us consider the given problem,
$\int {\sqrt {{x^2} - 1} } dx$
Take $I = \sqrt {{x^2} - 1} dx$, integrate this by parts and formula for this is $\int {udv} = uv - \int {vdu} $, let’s take $u = \sqrt {{x^2} - 1} $ and to find $du$ we need to differentiate $u$,
$du = \dfrac{1}{{2\sqrt {{x^2} - 1} }}\left( {2x - 0} \right)dx = \dfrac{x}{{\sqrt {{x^2} - 1} }}$
Let’s take $dv = dx$, if we integrate this we get $v$,
$v = x$
Substituting the value of $u$, $du$, $v$ and $dv$ we get,
$
\Rightarrow I = x\sqrt {{x^2} - 1} - \int x \left( {\dfrac{x}{{\sqrt {{x^2} - 1} }}} \right)dx \\
\Rightarrow I = x\sqrt {{x^2} - 1} - \int {\dfrac{{{x^2}}}{{\sqrt {{x^2} - 1} }}} dx \\
$
Add and subtract with $1$ in the second part of the above equation we get,
$ \Rightarrow I = x\sqrt {{x^2} - 1} - \int {\dfrac{{{x^2} - 1 + 1}}{{\sqrt {{x^2} - 1} }}} dx$
We are writing the above equation as,
$ \Rightarrow I = x\sqrt {{x^2} - 1} - \int {\left( {\dfrac{{{x^2} - 1}}{{\sqrt {{x^2} - 1} }} + \dfrac{1}{{\sqrt {{x^2} - 1} }}} \right)} dx$
$ \Rightarrow \int {\dfrac{{{x^2} - 1}}{{\sqrt {{x^2} - 1} }}} $ becomes $\int {\dfrac{{{x^2} - 1}}{{\sqrt {{x^2} - 1} }} = \int {\dfrac{{\sqrt {{x^2} - 1} \times \sqrt {{x^2} - 1} }}{{\sqrt {{x^2} - 1} }}} } = \int {\sqrt {{x^2} - 1} } $, the above equation becomes,
$ \Rightarrow I = x\sqrt {{x^2} - 1} - \int {\sqrt {{x^2} - 1} } dx - \int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx$
We know that, $I = \sqrt {{x^2} - 1} dx$ and $\int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx$$ = $$\log \left( {x + \sqrt {{x^2} - 1} } \right) + c$
$ \Rightarrow I = x\sqrt {{x^2} - 1} - I - \log \left( {x + \sqrt {{x^2} - 1} } \right) + c$
$ \Rightarrow I + I = x\sqrt {{x^2} - 1} - \log \left( {x + \sqrt {{x^2} - 1} } \right) + c$
$ \Rightarrow 2I = x\sqrt {{x^2} - 1} - \log \left( {x + \sqrt {{x^2} - 1} } \right) + c$
$ \Rightarrow I = \dfrac{x}{2}\sqrt {{x^2} - 1} - \dfrac{1}{2}\log \left( {x + \sqrt {{x^2} - 1} } \right) + \dfrac{c}{2}$
This is our required solution.
Additional information: This problem is one of the difficult problems in indefinite integral because only when you know the formula for the integral, which I have mentioned in the note, you are able to solve this problem. And integrating by parts method is a common method which is used most common in major problems in integration.
Note: To prove $\int {\dfrac{1}{{\sqrt {{x^2} - 1} }}} dx$$ = $$\log \left( {x + \sqrt {{x^2} - 1} } \right) + c$, take $u = x + \sqrt {{x^2} - {1^2}} $ and by differentiating this we get $ \Rightarrow du = \left( {1 + \dfrac{{2x}}{{2\sqrt {{x^2} - {1^2}} }}} \right)dx$
$ \Rightarrow du = \left( {\dfrac{{\sqrt {{x^2} - {1^2}} + x}}{{\sqrt {{x^2} - {1^2}} }}} \right)dx$
$ \Rightarrow dx = \left( {\dfrac{{\sqrt {{x^2} - {1^2}} }}{{\sqrt {{x^2} - {1^2}} + x}}} \right)du$
Substituting the value of $dx$ and $u$ in $I$ we get,
$ \Rightarrow I = \int {\left( {\dfrac{1}{{\sqrt {{x^2} - 1} }} \times \dfrac{{\sqrt {{x^2} - {1^2}} }}{u}} \right)} du$
$ \Rightarrow I = \int {\dfrac{{du}}{u}} $
$ I = \log u + c$, we already know that $u = x + \sqrt {{x^2} - {1^2}} $ so in the question we directly wrote this integral. Know this value so that you are able to save time in the examination.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

