
Evaluate the integral $\int {\dfrac{{{{\sec }^2}x - 7}}{{{{\sin }^7}x}}} dx = $
$A)\left[ {\dfrac{{\tan x}}{{{{\sin }^7}x}}} \right] + c$
$B)\left[ {\dfrac{{\cos x}}{{{{\sin }^7}x}}} \right] + c$
$C)\left[ {\dfrac{{\sin x}}{{{{\cos }^7}x}}} \right] + c$
$D)\left[ {\dfrac{{\sin x}}{{{{\tan }^7}x}}} \right] + c$
Answer
496.5k+ views
Hint: The given question consists of two different trigonometric functions in the numerator and the denominator. Therefore, we need to find out the integral value through the Integration By parts method. Since it is constant, we will separate it from the attached trigonometric function. Then, we apply by parts for the expression which contains only trigonometric functions.
Complete answer:
Let,
$I = \int {\dfrac{{{{\sec }^2}x - 7}}{{{{\sin }^7}x}}} dx$
Now, we can separate the constant and write the expression as,
$I = \int {\dfrac{{{{\sec }^2}x}}{{{{\sin }^7}x}}} dx - \int {\dfrac{7}{{{{\sin }^7}x}}} dx$
We can write $\dfrac{1}{{\sin x}}$ as $\cos ecx$
Now, we have the expression,
$ \Rightarrow I = \int {\cos e{c^7}} x \times {\sec ^2}xdx - \int {7\cos e{c^7}} xdx$
We apply integration by parts for the above expression $\int {f\left( x \right)g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]dx} } } $, we get,
\[ \Rightarrow I = \cos e{c^7}x\int {{{\sec }^2}xdx} - \int {\left[ {\dfrac{d}{{dx}}\left[ {\cos e{c^7}x} \right]\int {{{\sec }^2}xdx} } \right]} - \int {7\cos e{c^7}} xdx\]
We know that \[\int {{{\sec }^2}xdx} = \tan x\] and $\dfrac{{d\left( {\cos ecx} \right)}}{{dx}} = - \cos ecx\cot x$.
\[ \Rightarrow I = \cos e{c^7}x\tan x - \int {\left[ {7\cos e{c^6}x\left( { - \cos ecx\cot x} \right)\tan x} \right]} - \int {7\cos e{c^7}} xdx\]
Now,
\[ \Rightarrow I = \cos e{c^7}x\tan x - \int {\left[ {7\cos e{c^6}x\left( { - \cos ecx\cot x} \right)\tan x} \right]} - \int {7\cos e{c^7}} xdx\]
Simplifying the expression, we get,
\[ \Rightarrow I = \cos e{c^7}x\tan x + \int {\left[ {7\cos e{c^7}x\cot x\tan x} \right]} - \int {7\cos e{c^7}} xdx\]
Now, we know that tangent and cotangent are reciprocal functions. So, we get,
\[ \Rightarrow I = \cos e{c^7}x\tan x + \int {7\cos e{c^7}xdx} - \int {7\cos e{c^7}} xdx\]
Now, cancelling the similar terms with opposite signs, we get,
Where, $\cos e{c^7}x$ can be expressed as $\dfrac{1}{{{{\sin }^7}x}}$
Therefore, the final answer will be
$I = \dfrac{{\tan x}}{{{{\sin }^7}x}} + c$
Hence, option (A) is the correct option.
Note:
The integration by parts method is useful when two functions are multiplied together and have no specific formula for simplification. If the terms are not in the multiplication form, we need to bring them down into that form using the basic formula. Only then we can use the formula and simplify.
Complete answer:
Let,
$I = \int {\dfrac{{{{\sec }^2}x - 7}}{{{{\sin }^7}x}}} dx$
Now, we can separate the constant and write the expression as,
$I = \int {\dfrac{{{{\sec }^2}x}}{{{{\sin }^7}x}}} dx - \int {\dfrac{7}{{{{\sin }^7}x}}} dx$
We can write $\dfrac{1}{{\sin x}}$ as $\cos ecx$
Now, we have the expression,
$ \Rightarrow I = \int {\cos e{c^7}} x \times {\sec ^2}xdx - \int {7\cos e{c^7}} xdx$
We apply integration by parts for the above expression $\int {f\left( x \right)g\left( x \right)dx = f\left( x \right)\int {g\left( x \right)dx - \int {\left[ {\dfrac{d}{{dx}}f\left( x \right)\int {g\left( x \right)dx} } \right]dx} } } $, we get,
\[ \Rightarrow I = \cos e{c^7}x\int {{{\sec }^2}xdx} - \int {\left[ {\dfrac{d}{{dx}}\left[ {\cos e{c^7}x} \right]\int {{{\sec }^2}xdx} } \right]} - \int {7\cos e{c^7}} xdx\]
We know that \[\int {{{\sec }^2}xdx} = \tan x\] and $\dfrac{{d\left( {\cos ecx} \right)}}{{dx}} = - \cos ecx\cot x$.
\[ \Rightarrow I = \cos e{c^7}x\tan x - \int {\left[ {7\cos e{c^6}x\left( { - \cos ecx\cot x} \right)\tan x} \right]} - \int {7\cos e{c^7}} xdx\]
Now,
\[ \Rightarrow I = \cos e{c^7}x\tan x - \int {\left[ {7\cos e{c^6}x\left( { - \cos ecx\cot x} \right)\tan x} \right]} - \int {7\cos e{c^7}} xdx\]
Simplifying the expression, we get,
\[ \Rightarrow I = \cos e{c^7}x\tan x + \int {\left[ {7\cos e{c^7}x\cot x\tan x} \right]} - \int {7\cos e{c^7}} xdx\]
Now, we know that tangent and cotangent are reciprocal functions. So, we get,
\[ \Rightarrow I = \cos e{c^7}x\tan x + \int {7\cos e{c^7}xdx} - \int {7\cos e{c^7}} xdx\]
Now, cancelling the similar terms with opposite signs, we get,
Where, $\cos e{c^7}x$ can be expressed as $\dfrac{1}{{{{\sin }^7}x}}$
Therefore, the final answer will be
$I = \dfrac{{\tan x}}{{{{\sin }^7}x}} + c$
Hence, option (A) is the correct option.
Note:
The integration by parts method is useful when two functions are multiplied together and have no specific formula for simplification. If the terms are not in the multiplication form, we need to bring them down into that form using the basic formula. Only then we can use the formula and simplify.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

