
Evaluate the indefinite integral $\int {\sqrt {10x - {x^2}} dx} $ .
Answer
464.1k+ views
Hint: We need to integrate the given integral, for that first we’ll complete the square, and then using some substitution we will integrate this integral. There are two types of integral; definite and indefinite integral. Here the given is indefinite integral since there is no limit. Here we are going to apply the substitution method and we need to transform the given integral into a simpler form of integral by substituting the independent variable.
Formula to be used:
$\int {adx = ax + c} $
$\int {\cos pxdx = \dfrac{{\sin px}}{p} + c} $
$\sin \left( {\arcsin (x)} \right) = x$
Half angle formulae: $\cos 2x = 2\cos x - 1$
Identity: ${\sin ^2}x + {\cos ^2}x = 1$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
Complete answer:
Given integral: $\int {\sqrt {10x - {x^2}} dx} $
To integrate the given integral, we need to complete the square.
For that, first take negative sign common so that coefficient of ${x^2}$ becomes positive.
We get, $\int {\sqrt { - \left( {{x^2} - 10x} \right)} dx} $ .
Now, Adding and subtracting square of $\dfrac{1}{2} \times 10 = 5$ simultaneously,
we get, $\int {\sqrt { - \left( {{x^2} - 10x + {5^2} - {5^2}} \right)} dx} $
$ = \int {\sqrt { - \left( {{x^2} - 2\left( 5 \right)x + {5^2} - {5^2}} \right)} dx} $ .
$ = \int {\sqrt { - \left( {{{\left( {x - 5} \right)}^2} - {5^2}} \right)} dx} $ (Here we are using the identity ${(a - b)^2} = {a^2} - 2ab + {b^2}$)
$ = \int {\sqrt {25 - {{\left( {x - 5} \right)}^2}} dx} $
Now, substituting $x - 5 = u$ , then, on differentiating both sides, we have, $dx = du$ . The equation becomes $ = \int {\sqrt {25 - {u^2}} du} $
Now, substitute $u = 5\sin v$ , then on differentiating both sides, we have, $du = 5\cos vdv$ .
The equation becomes
$\int {\sqrt {25 - {{\left( {5\sin v} \right)}^2}} \left( {5\cos v} \right)dv} $
$ = \int {\sqrt {25 - 25{{\sin }^2}v} \left( {5\cos v} \right)dv} $ .
Taking $25$ outside the root, we get
$ = \int {5\sqrt {1 - {{\sin }^2}v} \left( {5\cos v} \right)dv} $
$ = \int {\sqrt {1 - {{\sin }^2}v} \left( {25\cos v} \right)dv} $
Now, using the identity, ${\sin ^2}x + {\cos ^2}x = 1$ , the equation becomes,
$ = \int {\sqrt {{{\cos }^2}v} \left( {25\cos v} \right)dv} $ .
On simplifying, we get,
$ = \int {25{{\cos }^2}vdv} $ .
Now, using the half-angle formula ${\cos ^2}v$ can be written as $\dfrac{{1 + \cos 2v}}{2}$
$ = 25\int {\left( {\dfrac{{1 + \cos 2v}}{2}} \right)dv} $
On integrating, we get, $\dfrac{{25}}{2}\left( {v + \dfrac{{\sin 2v}}{2}} \right) + c$ , where, $c$ is the constant of integration.
Finally, substitute back the values of $v = \arcsin \dfrac{u}{5}$ , we get,
\[ = \dfrac{{25}}{2}\left( {\left( {arc\sin \left( {\dfrac{u}{5}} \right) + \dfrac{{\sin \left( {2\arcsin \left( {\dfrac{u}{5}} \right)} \right)}}{2}} \right)} \right) + c\]
$ = \dfrac{{25}}{2}\left( {\arcsin \left( {\dfrac{u}{5}} \right) + \dfrac{u}{5}} \right) + c$
Now, substitute the values of $u = x - 5$ , we get,
$ = \dfrac{{25}}{2}\left( {\arcsin \left( {\dfrac{{x - 5}}{5}} \right) + \dfrac{{x - 5}}{5}} \right) + c$ .
On simplifying, we get,
$ = \dfrac{{25}}{2}\arcsin \left( {\dfrac{{x - 5}}{5}} \right) + \dfrac{5}{2}\left( {x - 5} \right) + c$ , where, $c$ is the constant of integration.
Note: This question can also be done directly using the integration formula after completing the square$\int {\sqrt {{a^2} - {x^2}} dx} = \dfrac{{x\sqrt {{a^2} - {x^2}} }}{2} + \dfrac{{{a^2}}}{2}\arcsin \left( {\dfrac{x}{a}} \right) + c$ .
Direct integration ${\cos ^2}x$ is not possible, so we have to convert it using the half-angle formula to remove the square.
Substituting the values back, for substitution is necessary, otherwise, the variables in the final answer won’t be the same as in the question.
Formula to be used:
$\int {adx = ax + c} $
$\int {\cos pxdx = \dfrac{{\sin px}}{p} + c} $
$\sin \left( {\arcsin (x)} \right) = x$
Half angle formulae: $\cos 2x = 2\cos x - 1$
Identity: ${\sin ^2}x + {\cos ^2}x = 1$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
Complete answer:
Given integral: $\int {\sqrt {10x - {x^2}} dx} $
To integrate the given integral, we need to complete the square.
For that, first take negative sign common so that coefficient of ${x^2}$ becomes positive.
We get, $\int {\sqrt { - \left( {{x^2} - 10x} \right)} dx} $ .
Now, Adding and subtracting square of $\dfrac{1}{2} \times 10 = 5$ simultaneously,
we get, $\int {\sqrt { - \left( {{x^2} - 10x + {5^2} - {5^2}} \right)} dx} $
$ = \int {\sqrt { - \left( {{x^2} - 2\left( 5 \right)x + {5^2} - {5^2}} \right)} dx} $ .
$ = \int {\sqrt { - \left( {{{\left( {x - 5} \right)}^2} - {5^2}} \right)} dx} $ (Here we are using the identity ${(a - b)^2} = {a^2} - 2ab + {b^2}$)
$ = \int {\sqrt {25 - {{\left( {x - 5} \right)}^2}} dx} $
Now, substituting $x - 5 = u$ , then, on differentiating both sides, we have, $dx = du$ . The equation becomes $ = \int {\sqrt {25 - {u^2}} du} $
Now, substitute $u = 5\sin v$ , then on differentiating both sides, we have, $du = 5\cos vdv$ .
The equation becomes
$\int {\sqrt {25 - {{\left( {5\sin v} \right)}^2}} \left( {5\cos v} \right)dv} $
$ = \int {\sqrt {25 - 25{{\sin }^2}v} \left( {5\cos v} \right)dv} $ .
Taking $25$ outside the root, we get
$ = \int {5\sqrt {1 - {{\sin }^2}v} \left( {5\cos v} \right)dv} $
$ = \int {\sqrt {1 - {{\sin }^2}v} \left( {25\cos v} \right)dv} $
Now, using the identity, ${\sin ^2}x + {\cos ^2}x = 1$ , the equation becomes,
$ = \int {\sqrt {{{\cos }^2}v} \left( {25\cos v} \right)dv} $ .
On simplifying, we get,
$ = \int {25{{\cos }^2}vdv} $ .
Now, using the half-angle formula ${\cos ^2}v$ can be written as $\dfrac{{1 + \cos 2v}}{2}$
$ = 25\int {\left( {\dfrac{{1 + \cos 2v}}{2}} \right)dv} $
On integrating, we get, $\dfrac{{25}}{2}\left( {v + \dfrac{{\sin 2v}}{2}} \right) + c$ , where, $c$ is the constant of integration.
Finally, substitute back the values of $v = \arcsin \dfrac{u}{5}$ , we get,
\[ = \dfrac{{25}}{2}\left( {\left( {arc\sin \left( {\dfrac{u}{5}} \right) + \dfrac{{\sin \left( {2\arcsin \left( {\dfrac{u}{5}} \right)} \right)}}{2}} \right)} \right) + c\]
$ = \dfrac{{25}}{2}\left( {\arcsin \left( {\dfrac{u}{5}} \right) + \dfrac{u}{5}} \right) + c$
Now, substitute the values of $u = x - 5$ , we get,
$ = \dfrac{{25}}{2}\left( {\arcsin \left( {\dfrac{{x - 5}}{5}} \right) + \dfrac{{x - 5}}{5}} \right) + c$ .
On simplifying, we get,
$ = \dfrac{{25}}{2}\arcsin \left( {\dfrac{{x - 5}}{5}} \right) + \dfrac{5}{2}\left( {x - 5} \right) + c$ , where, $c$ is the constant of integration.
Note: This question can also be done directly using the integration formula after completing the square$\int {\sqrt {{a^2} - {x^2}} dx} = \dfrac{{x\sqrt {{a^2} - {x^2}} }}{2} + \dfrac{{{a^2}}}{2}\arcsin \left( {\dfrac{x}{a}} \right) + c$ .
Direct integration ${\cos ^2}x$ is not possible, so we have to convert it using the half-angle formula to remove the square.
Substituting the values back, for substitution is necessary, otherwise, the variables in the final answer won’t be the same as in the question.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

