
Evaluate the given integral $\int{\left( \sqrt{\dfrac{\cos x}{x}}-\sqrt{\dfrac{x}{\cos x}}\sin x \right)dx}$
$\begin{align}
& a)-\sqrt{x\cos x}+C \\
& b)\sqrt{x\cos x}+C \\
& c)2\sqrt{x\cos x}+C \\
& d)C-2\sqrt{x\cos x} \\
\end{align}$
Answer
586.2k+ views
Hint: First we will write the expression inside integral in the form of $\dfrac{p}{q}$ by cross multiplication. Then we know that $(f.g)'=f'g+g'f$ hence we can use this formula to simplify the numerator. Then we will use a method of substitution to solve the integration.
Complete step by step answer:
Now first consider $\int{\left( \sqrt{\dfrac{\cos x}{x}}-\sqrt{\dfrac{x}{\cos x}}\sin x \right)dx}$
Let us say the value of this integral is I, then we have $I=\int{\left( \sqrt{\dfrac{\cos x}{x}}-\sqrt{\dfrac{x}{\cos x}}\sin x \right)dx}$
Rearranging the terms we get $I=\int{\left( \dfrac{\sqrt{\cos x}}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{\cos x}}\sin x \right)dx}$
Cross multiplying the terms we get,
$I=\int{\left( \dfrac{\sqrt{\cos x}.\sqrt{\cos x}-\sqrt{x}\sqrt{x}\sin x}{\sqrt{x\cos x}} \right)dx}$
Now we know that for any a $\sqrt{a}.\sqrt{a}=a$
Hence, we can write the above equation as
$I=\int{\left( \dfrac{\cos x-x\sin x}{\sqrt{x\cos x}} \right)dx}..................(1)$
Now we will try to simplify the numerator.
Consider the numerator $\cos x-x\sin x$
We know that $\dfrac{d(\cos x)}{dx}=-\sin x$ and $\dfrac{d(x)}{dx}=1$
Now substituting this in equation (1) we get
$I=\int{\left( \dfrac{\cos x\left( \dfrac{d(x)}{dx} \right)+x\left( \dfrac{d(\cos x)}{dx} \right)}{\sqrt{x\cos x}} \right)dx}.$
But we know that $f(x)g'(x)+g(x)f'(x)=\dfrac{d(f(x).g(x))}{dx}$
Hence we will use this to get
$I=\int{\left( \dfrac{\left( \dfrac{d(x.\cos x)}{dx} \right)}{\sqrt{x\cos x}} \right)dx}.$
Now cancelling dx we get from the denominator and the numerator we get
\[\begin{align}
& I=\int{\left( \dfrac{\left( \dfrac{d(x.\cos x)}{1} \right)}{\sqrt{x\cos x}} \right)} \\
& I=\int{\left( \dfrac{d(x\cos x)}{\sqrt{x\cos x}} \right)} \\
\end{align}\]
Now we will solve this by method of integration. Hence, to do so let us substitute x.cosx as t.
Hence we get
$I=\int{\dfrac{dt}{\sqrt{t}}}$
Now we know that $\dfrac{1}{\sqrt{t}}={{t}^{-\dfrac{1}{2}}}$
Hence we have $I=\int{{{t}^{-\dfrac{1}{2}}}}dt$
Now integration of ${{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}$+ C
Hence we get $I=\int{{{t}^{-\dfrac{1}{2}}}}dt=\dfrac{{{t}^{1-\dfrac{1}{2}}}}{1-\dfrac{1}{2}}+C=2{{t}^{\dfrac{1}{2}}}+C$
Hence we have $I=2{{t}^{\dfrac{1}{2}}}+C$
Now we know that ${{t}^{\dfrac{1}{2}}}=\sqrt{t}$ hence using this we get
$I=2\sqrt{t}+C$
Now let us substitute the value of t as x.cosx
Hence we get
$I=2\sqrt{x\cos x}+C$
Option d is the correct option
Note:
Note that dx in our cancels out and the variable of integration changes to t. While taking differentiation of cosx note that it is – sinx and not just sinx. Also in the end do not forget to substitute the value of t and add constant since this is an indefinite integration.
Complete step by step answer:
Now first consider $\int{\left( \sqrt{\dfrac{\cos x}{x}}-\sqrt{\dfrac{x}{\cos x}}\sin x \right)dx}$
Let us say the value of this integral is I, then we have $I=\int{\left( \sqrt{\dfrac{\cos x}{x}}-\sqrt{\dfrac{x}{\cos x}}\sin x \right)dx}$
Rearranging the terms we get $I=\int{\left( \dfrac{\sqrt{\cos x}}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{\cos x}}\sin x \right)dx}$
Cross multiplying the terms we get,
$I=\int{\left( \dfrac{\sqrt{\cos x}.\sqrt{\cos x}-\sqrt{x}\sqrt{x}\sin x}{\sqrt{x\cos x}} \right)dx}$
Now we know that for any a $\sqrt{a}.\sqrt{a}=a$
Hence, we can write the above equation as
$I=\int{\left( \dfrac{\cos x-x\sin x}{\sqrt{x\cos x}} \right)dx}..................(1)$
Now we will try to simplify the numerator.
Consider the numerator $\cos x-x\sin x$
We know that $\dfrac{d(\cos x)}{dx}=-\sin x$ and $\dfrac{d(x)}{dx}=1$
Now substituting this in equation (1) we get
$I=\int{\left( \dfrac{\cos x\left( \dfrac{d(x)}{dx} \right)+x\left( \dfrac{d(\cos x)}{dx} \right)}{\sqrt{x\cos x}} \right)dx}.$
But we know that $f(x)g'(x)+g(x)f'(x)=\dfrac{d(f(x).g(x))}{dx}$
Hence we will use this to get
$I=\int{\left( \dfrac{\left( \dfrac{d(x.\cos x)}{dx} \right)}{\sqrt{x\cos x}} \right)dx}.$
Now cancelling dx we get from the denominator and the numerator we get
\[\begin{align}
& I=\int{\left( \dfrac{\left( \dfrac{d(x.\cos x)}{1} \right)}{\sqrt{x\cos x}} \right)} \\
& I=\int{\left( \dfrac{d(x\cos x)}{\sqrt{x\cos x}} \right)} \\
\end{align}\]
Now we will solve this by method of integration. Hence, to do so let us substitute x.cosx as t.
Hence we get
$I=\int{\dfrac{dt}{\sqrt{t}}}$
Now we know that $\dfrac{1}{\sqrt{t}}={{t}^{-\dfrac{1}{2}}}$
Hence we have $I=\int{{{t}^{-\dfrac{1}{2}}}}dt$
Now integration of ${{x}^{n}}=\dfrac{{{x}^{n+1}}}{n+1}$+ C
Hence we get $I=\int{{{t}^{-\dfrac{1}{2}}}}dt=\dfrac{{{t}^{1-\dfrac{1}{2}}}}{1-\dfrac{1}{2}}+C=2{{t}^{\dfrac{1}{2}}}+C$
Hence we have $I=2{{t}^{\dfrac{1}{2}}}+C$
Now we know that ${{t}^{\dfrac{1}{2}}}=\sqrt{t}$ hence using this we get
$I=2\sqrt{t}+C$
Now let us substitute the value of t as x.cosx
Hence we get
$I=2\sqrt{x\cos x}+C$
Option d is the correct option
Note:
Note that dx in our cancels out and the variable of integration changes to t. While taking differentiation of cosx note that it is – sinx and not just sinx. Also in the end do not forget to substitute the value of t and add constant since this is an indefinite integration.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

