
Evaluate the given integral: $\int{\dfrac{\left( x+1 \right)dx}{x\left( 1+x{{e}^{x}} \right)}}$
Answer
611.4k+ views
Hint: Start by simplification of the integral by multiplying the numerator and the denominator by ${{e}^{x}}$. After simplification, let the ${{e}^{x}}$ be t and solve the integral.
Complete step-by-step solution -
Before starting the solution, let us discuss the important formulas of indefinite integration.
Some important formulas are:
$\int{{{e}^{x}}dx}={{e}^{x}}+c$
$\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}$
Now let us start with the integral given in the above question.
$\int{\dfrac{\left( x+1 \right)dx}{x\left( 1+x{{e}^{x}} \right)}}$
Now we will divide and multiply the above integral by ${{e}^{x}}$ . On doing so, we get
$\int{\dfrac{{{e}^{x}}\left( x+1 \right)dx}{x{{e}^{x}}\left( 1+x{{e}^{x}} \right)}}$
Now to convert the integral to a form from where we can directly integrate it, we let $x{{e}^{x}}$ to be t.
$\therefore \dfrac{d\left( x{{e}^{x}} \right)}{dx}=\dfrac{dt}{dx}$
$\Rightarrow {{e}^{x}}\left( 1+x \right)dx=dt$
So, if we substitute the terms in the integral in terms of t, our integral becomes:
$\int{\dfrac{dt}{t\left( 1+t \right)}}$
Now adding and subtracting t to the numerator of the above integral, we get
$\int{\dfrac{\left( 1+t-t \right)dt}{t\left( 1+t \right)}}$
\[=\int{\left( \dfrac{\left( 1+t \right)}{t\left( 1+t \right)}-\dfrac{t}{t\left( 1+t \right)} \right)dt}\]
Now we know that $\int{\left( f\left( x \right)-g\left( x \right) \right)dx}=\int{f\left( x \right)dx-\int{g\left( x \right)dx}}$ .
\[\int{\dfrac{\left( 1+t \right)}{t\left( 1+t \right)}dt}-\int{\dfrac{t}{t\left( 1+t \right)}dt}\]
\[=\int{\dfrac{1}{t}dt}-\int{\dfrac{1}{\left( 1+t \right)}dt}\]
Now we know that $\int{\dfrac{dx}{x}}$ is equal to lnx +c. So, our integral comes out to be:
\[\ln \left( t \right)-\ln \left( 1+t \right)+c\]
Now we will substitute the value of t as assumed by us to convert our answer in terms of x.
\[{{\operatorname{lnxe}}^{x}}-\ln \left( 1+x{{e}^{x}} \right)+c\]
Now we know that $\ln a-\ln b=\ln \dfrac{a}{b}$ .
\[\ln \dfrac{x{{e}^{x}}}{1+x{{e}^{x}}}+c\]
So, we can say that the value of $\int{\dfrac{\left( x+1 \right)dx}{x\left( 1+x{{e}^{x}} \right)}}$ is equal to \[\ln \dfrac{x{{e}^{x}}}{1+x{{e}^{x}}}+c\] .
Note: Don’t forget to substitute the assumed variable in your integrated expression to reach the final answer. Also, you need to remember all the basic formulas that we use for indefinite integrals as they are used in definite integrations as well.
Complete step-by-step solution -
Before starting the solution, let us discuss the important formulas of indefinite integration.
Some important formulas are:
$\int{{{e}^{x}}dx}={{e}^{x}}+c$
$\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}$
Now let us start with the integral given in the above question.
$\int{\dfrac{\left( x+1 \right)dx}{x\left( 1+x{{e}^{x}} \right)}}$
Now we will divide and multiply the above integral by ${{e}^{x}}$ . On doing so, we get
$\int{\dfrac{{{e}^{x}}\left( x+1 \right)dx}{x{{e}^{x}}\left( 1+x{{e}^{x}} \right)}}$
Now to convert the integral to a form from where we can directly integrate it, we let $x{{e}^{x}}$ to be t.
$\therefore \dfrac{d\left( x{{e}^{x}} \right)}{dx}=\dfrac{dt}{dx}$
$\Rightarrow {{e}^{x}}\left( 1+x \right)dx=dt$
So, if we substitute the terms in the integral in terms of t, our integral becomes:
$\int{\dfrac{dt}{t\left( 1+t \right)}}$
Now adding and subtracting t to the numerator of the above integral, we get
$\int{\dfrac{\left( 1+t-t \right)dt}{t\left( 1+t \right)}}$
\[=\int{\left( \dfrac{\left( 1+t \right)}{t\left( 1+t \right)}-\dfrac{t}{t\left( 1+t \right)} \right)dt}\]
Now we know that $\int{\left( f\left( x \right)-g\left( x \right) \right)dx}=\int{f\left( x \right)dx-\int{g\left( x \right)dx}}$ .
\[\int{\dfrac{\left( 1+t \right)}{t\left( 1+t \right)}dt}-\int{\dfrac{t}{t\left( 1+t \right)}dt}\]
\[=\int{\dfrac{1}{t}dt}-\int{\dfrac{1}{\left( 1+t \right)}dt}\]
Now we know that $\int{\dfrac{dx}{x}}$ is equal to lnx +c. So, our integral comes out to be:
\[\ln \left( t \right)-\ln \left( 1+t \right)+c\]
Now we will substitute the value of t as assumed by us to convert our answer in terms of x.
\[{{\operatorname{lnxe}}^{x}}-\ln \left( 1+x{{e}^{x}} \right)+c\]
Now we know that $\ln a-\ln b=\ln \dfrac{a}{b}$ .
\[\ln \dfrac{x{{e}^{x}}}{1+x{{e}^{x}}}+c\]
So, we can say that the value of $\int{\dfrac{\left( x+1 \right)dx}{x\left( 1+x{{e}^{x}} \right)}}$ is equal to \[\ln \dfrac{x{{e}^{x}}}{1+x{{e}^{x}}}+c\] .
Note: Don’t forget to substitute the assumed variable in your integrated expression to reach the final answer. Also, you need to remember all the basic formulas that we use for indefinite integrals as they are used in definite integrations as well.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

