
Evaluate the given indefinite integral: $\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$?
Answer
580.2k+ views
Hint: We start solving the problem by converting the given integrand into subtraction of two different function and use the fact that $\int{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}$. We then use the facts that $\dfrac{1}{\cos x}=\sec x$, $\dfrac{1}{\sin x}=\operatorname{cosec}x$, \[\int{{{\sec }^{2}}xdx}=\tan x+C\] and $\int{{{\operatorname{cosec}}^{2}}xdx}=-\cot x+C$ to solve the problem further. We then use the facts $\cot x=\dfrac{1}{\tan x}$, $1+{{\tan }^{2}}x={{\sec }^{2}}x$, $\sec x=\dfrac{1}{\cos x}$, $\tan x=\dfrac{\sin x}{\cos x}$ and make necessary calculations to get the required answer.
Complete step-by-step solution
According to the problem, we need to find the solution for the given indefinite integral $\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$.
Let us assume the integral be I. So, we get $I=\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$.
$\Rightarrow I=\int{\left( \dfrac{{{\sin }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}-\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x} \right)dx}$ ------(1).
We know that $\int{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}$, we use this result in equation (1).
$\Rightarrow I=\int{\dfrac{{{\sin }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}-\int{\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$.
$\Rightarrow I=\int{\dfrac{1}{{{\cos }^{2}}x}dx}-\int{\dfrac{1}{{{\sin }^{2}}x}dx}$ -----(2).
We know that $\dfrac{1}{\cos x}=\sec x$ and $\dfrac{1}{\sin x}=\operatorname{cosec}x$, We use these results in equation (2).
$\Rightarrow I=\int{{{\sec }^{2}}xdx}-\int{{{\operatorname{cosec}}^{2}}xdx}$ ------(3).
We know that \[\int{{{\sec }^{2}}xdx}=\tan x+C\] and $\int{{{\operatorname{cosec}}^{2}}xdx}=-\cot x+C$. We use these results in equation (3).
$\Rightarrow I=\tan x-\left( -\cot x \right)+C$.
$\Rightarrow I=\tan x+\cot x+C$ --------(4).
We know that $\cot x=\dfrac{1}{\tan x}$, we use this result in equation (4).
$\Rightarrow I=\tan x+\dfrac{1}{\tan x}+C$.
$\Rightarrow I=\dfrac{{{\tan }^{2}}x+1}{\tan x}+C$ ------(5).
We know that $1+{{\tan }^{2}}x={{\sec }^{2}}x$, we use this result in equation (5).
$\Rightarrow I=\dfrac{{{\sec }^{2}}x}{\tan x}+C$ -------(6).
We know that $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$. We use these results in equation (6).
$\Rightarrow I=\dfrac{\dfrac{1}{{{\cos }^{2}}x}}{\dfrac{\sin x}{\cos x}}+C$.
$\Rightarrow I=\dfrac{1}{\sin x\cos x}+C$.
$\Rightarrow I=\dfrac{2}{2\sin x\cos x}+C$ -------(7).
We know that $\sin 2x=2\sin x\cos x$, we use this result in equation (7).
$\Rightarrow I=\dfrac{2}{\sin 2x}+C$.
So, we have found the result of indefinite integral $\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$ as $\dfrac{2}{\sin 2x}+C$.
$\therefore$ $\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\dfrac{2}{\sin 2x}+C$.
Note: We should not forget to add the constant of integration C while doing the problems related to Indefinite integrals. We can alternatively solve the problem as shown below:
$\Rightarrow I=\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$.
$\Rightarrow I=\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\left( \sin x\cos x \right)}^{2}}}dx}$.
$\Rightarrow I=\int{\dfrac{-\cos 2x}{{{\left( \dfrac{\sin 2x}{2} \right)}^{2}}}dx}$.
$\Rightarrow I=\int{\dfrac{-4\cos 2x}{{{\sin }^{2}}2x}dx}$.
Let us assume $\sin 2x=t$, we get $dt=2\cos 2xdx$.
$\Rightarrow I=\int{\dfrac{-2}{{{t}^{2}}}dt}$.
$\Rightarrow I=\int{-2{{t}^{-2}}dt}$.
We know that $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$.
$\Rightarrow I=-2\times \left( \dfrac{{{t}^{-2+1}}}{-2+1} \right)+C$.
$\Rightarrow I=-2\times \left( \dfrac{{{t}^{-1}}}{-1} \right)+C$.
$\Rightarrow I=\dfrac{2}{t}+C$.
Now, let us substitute $t=\sin 2x$.
$\Rightarrow I=\dfrac{2}{\sin 2x}+C$.
Complete step-by-step solution
According to the problem, we need to find the solution for the given indefinite integral $\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$.
Let us assume the integral be I. So, we get $I=\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$.
$\Rightarrow I=\int{\left( \dfrac{{{\sin }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}-\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x} \right)dx}$ ------(1).
We know that $\int{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}$, we use this result in equation (1).
$\Rightarrow I=\int{\dfrac{{{\sin }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}-\int{\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$.
$\Rightarrow I=\int{\dfrac{1}{{{\cos }^{2}}x}dx}-\int{\dfrac{1}{{{\sin }^{2}}x}dx}$ -----(2).
We know that $\dfrac{1}{\cos x}=\sec x$ and $\dfrac{1}{\sin x}=\operatorname{cosec}x$, We use these results in equation (2).
$\Rightarrow I=\int{{{\sec }^{2}}xdx}-\int{{{\operatorname{cosec}}^{2}}xdx}$ ------(3).
We know that \[\int{{{\sec }^{2}}xdx}=\tan x+C\] and $\int{{{\operatorname{cosec}}^{2}}xdx}=-\cot x+C$. We use these results in equation (3).
$\Rightarrow I=\tan x-\left( -\cot x \right)+C$.
$\Rightarrow I=\tan x+\cot x+C$ --------(4).
We know that $\cot x=\dfrac{1}{\tan x}$, we use this result in equation (4).
$\Rightarrow I=\tan x+\dfrac{1}{\tan x}+C$.
$\Rightarrow I=\dfrac{{{\tan }^{2}}x+1}{\tan x}+C$ ------(5).
We know that $1+{{\tan }^{2}}x={{\sec }^{2}}x$, we use this result in equation (5).
$\Rightarrow I=\dfrac{{{\sec }^{2}}x}{\tan x}+C$ -------(6).
We know that $\sec x=\dfrac{1}{\cos x}$ and $\tan x=\dfrac{\sin x}{\cos x}$. We use these results in equation (6).
$\Rightarrow I=\dfrac{\dfrac{1}{{{\cos }^{2}}x}}{\dfrac{\sin x}{\cos x}}+C$.
$\Rightarrow I=\dfrac{1}{\sin x\cos x}+C$.
$\Rightarrow I=\dfrac{2}{2\sin x\cos x}+C$ -------(7).
We know that $\sin 2x=2\sin x\cos x$, we use this result in equation (7).
$\Rightarrow I=\dfrac{2}{\sin 2x}+C$.
So, we have found the result of indefinite integral $\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$ as $\dfrac{2}{\sin 2x}+C$.
$\therefore$ $\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}=\dfrac{2}{\sin 2x}+C$.
Note: We should not forget to add the constant of integration C while doing the problems related to Indefinite integrals. We can alternatively solve the problem as shown below:
$\Rightarrow I=\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\sin }^{2}}x{{\cos }^{2}}x}dx}$.
$\Rightarrow I=\int{\dfrac{{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\left( \sin x\cos x \right)}^{2}}}dx}$.
$\Rightarrow I=\int{\dfrac{-\cos 2x}{{{\left( \dfrac{\sin 2x}{2} \right)}^{2}}}dx}$.
$\Rightarrow I=\int{\dfrac{-4\cos 2x}{{{\sin }^{2}}2x}dx}$.
Let us assume $\sin 2x=t$, we get $dt=2\cos 2xdx$.
$\Rightarrow I=\int{\dfrac{-2}{{{t}^{2}}}dt}$.
$\Rightarrow I=\int{-2{{t}^{-2}}dt}$.
We know that $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$.
$\Rightarrow I=-2\times \left( \dfrac{{{t}^{-2+1}}}{-2+1} \right)+C$.
$\Rightarrow I=-2\times \left( \dfrac{{{t}^{-1}}}{-1} \right)+C$.
$\Rightarrow I=\dfrac{2}{t}+C$.
Now, let us substitute $t=\sin 2x$.
$\Rightarrow I=\dfrac{2}{\sin 2x}+C$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

