
Evaluate the following
\[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\]
Answer
607.2k+ views
Hint:First of all, use \[\sin \left( -\theta \right)=-\sin \theta \]. Now use, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\] in each term. Now find the angles at which \[\tan \theta =\dfrac{1}{\sqrt{3}},\tan \theta =\sqrt{3}\] and \[\tan \theta =1\] or the value of \[{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right),{{\tan }^{-1}}\left( \sqrt{3} \right)\] and \[{{\tan }^{-1}}\left( 1 \right)\] and substitute these in the given expression to get the required answer.
Complete step-by-step answer:
In this question, we have to find the value of the expression \[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\].
First of all, let us consider the expression given in the question,
\[E={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\]
We know that \[\sin \left( -\theta \right)=-\sin \theta \]. By using this in the above expression, we get,
\[E={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( -\sin \dfrac{\pi }{2} \right)\]
Also, we know that, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\]. By using this in the above expression, we get,
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)+\left( -{{\tan }^{-1}}\sqrt{3} \right)+{{\tan }^{-1}}\left( -\sin \dfrac{\pi }{2} \right)\]
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)-{{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( \sin \dfrac{\pi }{2} \right).....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
From the above table, we get, \[\sin \dfrac{\pi }{2}=1\]. By using this in equation (i), we get,
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)-{{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( 1 \right).....\left( ii \right)\]
Also from the above table, we can see that
\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{1}{\sqrt{3}}\]
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)=\dfrac{\pi }{6}\]
\[\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
\[\Rightarrow {{\tan }^{-1}}\left( \sqrt{3} \right)=\dfrac{\pi }{3}\]
\[\tan \left( \dfrac{\pi }{4} \right)=1\]
\[\Rightarrow {{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]
So by substituting the value of \[{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right),{{\tan }^{-1}}\left( \sqrt{3} \right)\] and \[{{\tan }^{-1}}\left( 1 \right)\] in equation (ii), we get, \[E=-\dfrac{\pi }{6}-\dfrac{\pi }{3}-\dfrac{\pi }{4}\]
By simplifying the above equation, we get,
\[E=-\left( \dfrac{\pi }{6}+\dfrac{\pi }{3}+\dfrac{\pi }{4} \right)\]
\[E=\dfrac{-\left( 2\pi +4\pi +3\pi \right)}{12}\]
\[E=-\left( \dfrac{9\pi }{12} \right)\]
\[E=\dfrac{-3\pi }{4}\]
Hence, we get the value of \[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\] as \[\dfrac{-3\pi }{4}\].
Note: In this question, some students make this mistake of taking \[{{\tan }^{-1}}\left( -x \right)\] as \[\pi -{{\tan }^{-1}}\left( x \right)\] like in case of \[{{\cot }^{-1}}\left( -x \right)\] which is wrong because \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\]. Also in the case of inverse trigonometric functions, students must take care that the angle they take must lie in the range of respective functions to get the correct answer. Also, students should memorize the table for general trigonometric ratios.
Complete step-by-step answer:
In this question, we have to find the value of the expression \[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\].
First of all, let us consider the expression given in the question,
\[E={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\]
We know that \[\sin \left( -\theta \right)=-\sin \theta \]. By using this in the above expression, we get,
\[E={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( -\sin \dfrac{\pi }{2} \right)\]
Also, we know that, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\]. By using this in the above expression, we get,
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)+\left( -{{\tan }^{-1}}\sqrt{3} \right)+{{\tan }^{-1}}\left( -\sin \dfrac{\pi }{2} \right)\]
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)-{{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( \sin \dfrac{\pi }{2} \right).....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
From the above table, we get, \[\sin \dfrac{\pi }{2}=1\]. By using this in equation (i), we get,
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)-{{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( 1 \right).....\left( ii \right)\]
Also from the above table, we can see that
\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{1}{\sqrt{3}}\]
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)=\dfrac{\pi }{6}\]
\[\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
\[\Rightarrow {{\tan }^{-1}}\left( \sqrt{3} \right)=\dfrac{\pi }{3}\]
\[\tan \left( \dfrac{\pi }{4} \right)=1\]
\[\Rightarrow {{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]
So by substituting the value of \[{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right),{{\tan }^{-1}}\left( \sqrt{3} \right)\] and \[{{\tan }^{-1}}\left( 1 \right)\] in equation (ii), we get, \[E=-\dfrac{\pi }{6}-\dfrac{\pi }{3}-\dfrac{\pi }{4}\]
By simplifying the above equation, we get,
\[E=-\left( \dfrac{\pi }{6}+\dfrac{\pi }{3}+\dfrac{\pi }{4} \right)\]
\[E=\dfrac{-\left( 2\pi +4\pi +3\pi \right)}{12}\]
\[E=-\left( \dfrac{9\pi }{12} \right)\]
\[E=\dfrac{-3\pi }{4}\]
Hence, we get the value of \[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\] as \[\dfrac{-3\pi }{4}\].
Note: In this question, some students make this mistake of taking \[{{\tan }^{-1}}\left( -x \right)\] as \[\pi -{{\tan }^{-1}}\left( x \right)\] like in case of \[{{\cot }^{-1}}\left( -x \right)\] which is wrong because \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\]. Also in the case of inverse trigonometric functions, students must take care that the angle they take must lie in the range of respective functions to get the correct answer. Also, students should memorize the table for general trigonometric ratios.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

