
Evaluate the following
\[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\]
Answer
593.1k+ views
Hint:First of all, use \[\sin \left( -\theta \right)=-\sin \theta \]. Now use, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\] in each term. Now find the angles at which \[\tan \theta =\dfrac{1}{\sqrt{3}},\tan \theta =\sqrt{3}\] and \[\tan \theta =1\] or the value of \[{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right),{{\tan }^{-1}}\left( \sqrt{3} \right)\] and \[{{\tan }^{-1}}\left( 1 \right)\] and substitute these in the given expression to get the required answer.
Complete step-by-step answer:
In this question, we have to find the value of the expression \[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\].
First of all, let us consider the expression given in the question,
\[E={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\]
We know that \[\sin \left( -\theta \right)=-\sin \theta \]. By using this in the above expression, we get,
\[E={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( -\sin \dfrac{\pi }{2} \right)\]
Also, we know that, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\]. By using this in the above expression, we get,
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)+\left( -{{\tan }^{-1}}\sqrt{3} \right)+{{\tan }^{-1}}\left( -\sin \dfrac{\pi }{2} \right)\]
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)-{{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( \sin \dfrac{\pi }{2} \right).....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
From the above table, we get, \[\sin \dfrac{\pi }{2}=1\]. By using this in equation (i), we get,
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)-{{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( 1 \right).....\left( ii \right)\]
Also from the above table, we can see that
\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{1}{\sqrt{3}}\]
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)=\dfrac{\pi }{6}\]
\[\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
\[\Rightarrow {{\tan }^{-1}}\left( \sqrt{3} \right)=\dfrac{\pi }{3}\]
\[\tan \left( \dfrac{\pi }{4} \right)=1\]
\[\Rightarrow {{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]
So by substituting the value of \[{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right),{{\tan }^{-1}}\left( \sqrt{3} \right)\] and \[{{\tan }^{-1}}\left( 1 \right)\] in equation (ii), we get, \[E=-\dfrac{\pi }{6}-\dfrac{\pi }{3}-\dfrac{\pi }{4}\]
By simplifying the above equation, we get,
\[E=-\left( \dfrac{\pi }{6}+\dfrac{\pi }{3}+\dfrac{\pi }{4} \right)\]
\[E=\dfrac{-\left( 2\pi +4\pi +3\pi \right)}{12}\]
\[E=-\left( \dfrac{9\pi }{12} \right)\]
\[E=\dfrac{-3\pi }{4}\]
Hence, we get the value of \[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\] as \[\dfrac{-3\pi }{4}\].
Note: In this question, some students make this mistake of taking \[{{\tan }^{-1}}\left( -x \right)\] as \[\pi -{{\tan }^{-1}}\left( x \right)\] like in case of \[{{\cot }^{-1}}\left( -x \right)\] which is wrong because \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\]. Also in the case of inverse trigonometric functions, students must take care that the angle they take must lie in the range of respective functions to get the correct answer. Also, students should memorize the table for general trigonometric ratios.
Complete step-by-step answer:
In this question, we have to find the value of the expression \[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\].
First of all, let us consider the expression given in the question,
\[E={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\]
We know that \[\sin \left( -\theta \right)=-\sin \theta \]. By using this in the above expression, we get,
\[E={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( -\sin \dfrac{\pi }{2} \right)\]
Also, we know that, \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\]. By using this in the above expression, we get,
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)+\left( -{{\tan }^{-1}}\sqrt{3} \right)+{{\tan }^{-1}}\left( -\sin \dfrac{\pi }{2} \right)\]
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)-{{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( \sin \dfrac{\pi }{2} \right).....\left( i \right)\]
Now, let us draw the table for trigonometric ratios of general angles.
From the above table, we get, \[\sin \dfrac{\pi }{2}=1\]. By using this in equation (i), we get,
\[E=-{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)-{{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( 1 \right).....\left( ii \right)\]
Also from the above table, we can see that
\[\tan \left( \dfrac{\pi }{6} \right)=\dfrac{1}{\sqrt{3}}\]
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)=\dfrac{\pi }{6}\]
\[\tan \left( \dfrac{\pi }{3} \right)=\sqrt{3}\]
\[\Rightarrow {{\tan }^{-1}}\left( \sqrt{3} \right)=\dfrac{\pi }{3}\]
\[\tan \left( \dfrac{\pi }{4} \right)=1\]
\[\Rightarrow {{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}\]
So by substituting the value of \[{{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right),{{\tan }^{-1}}\left( \sqrt{3} \right)\] and \[{{\tan }^{-1}}\left( 1 \right)\] in equation (ii), we get, \[E=-\dfrac{\pi }{6}-\dfrac{\pi }{3}-\dfrac{\pi }{4}\]
By simplifying the above equation, we get,
\[E=-\left( \dfrac{\pi }{6}+\dfrac{\pi }{3}+\dfrac{\pi }{4} \right)\]
\[E=\dfrac{-\left( 2\pi +4\pi +3\pi \right)}{12}\]
\[E=-\left( \dfrac{9\pi }{12} \right)\]
\[E=\dfrac{-3\pi }{4}\]
Hence, we get the value of \[{{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)+{{\tan }^{-1}}\left( -\sqrt{3} \right)+{{\tan }^{-1}}\left( \sin \left( -\dfrac{\pi }{2} \right) \right)\] as \[\dfrac{-3\pi }{4}\].
Note: In this question, some students make this mistake of taking \[{{\tan }^{-1}}\left( -x \right)\] as \[\pi -{{\tan }^{-1}}\left( x \right)\] like in case of \[{{\cot }^{-1}}\left( -x \right)\] which is wrong because \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}\left( x \right)\]. Also in the case of inverse trigonometric functions, students must take care that the angle they take must lie in the range of respective functions to get the correct answer. Also, students should memorize the table for general trigonometric ratios.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

