
Evaluate the following: \[{\left( {10.4} \right)^3}\].
(a) \[1124.846\]
(b) \[1124.864\]
(c) \[1124.964\]
(d) \[1124.874\]
Answer
484.2k+ views
Hint: Here, we need to find the value of the given cube \[{\left( {10.4} \right)^3}\]. We will write the given number as the cube of a sum of two numbers. Then, we will use the algebraic identity for the cube of the sum of two numbers and simplify the expression to get the required value.
Formula Used: The cube of the sum of two numbers \[a\] and \[b\] is given by the algebraic identity \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\].
Complete step-by-step answer:
First, we will write the number \[10.4\] as the sum of two numbers.
Rewriting the number \[10.4\], we get
\[10.4 = 10 + 0.4\]
Substituting \[10.4 = 10 + 0.4\] in the given cube \[{\left( {10.4} \right)^3}\], we get
\[ \Rightarrow {\left( {10.4} \right)^3} = {\left( {10 + 0.4} \right)^3}\]
Now, we know that \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\].
Therefore, substituting \[a = 10\] and \[b = 0.4\] in the identity, we get
\[ \Rightarrow {\left( {10 + 0.4} \right)^3} = {10^3} + {\left( {0.4} \right)^3} + 3\left( {10} \right)\left( {0.4} \right)\left( {10 + 0.4} \right)\]
or
\[ \Rightarrow {\left( {10.4} \right)^3} = {10^3} + {\left( {0.4} \right)^3} + 3\left( {10} \right)\left( {0.4} \right)\left( {10 + 0.4} \right)\]
We will simplify the expression on the right hand side to get the required answer.
Applying the exponents on the bases, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1000 + 0.064 + 3\left( {10} \right)\left( {0.4} \right)\left( {10 + 0.4} \right)\]
Multiplying the terms 3, 10, and \[0.4\], we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1000 + 0.064 + 12\left( {10 + 0.4} \right)\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1000 + 0.064 + 120 + 4.8\]
Now, adding the terms in the equation, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1124.864\]
\[\therefore\] We get the exact value of \[{\left( {10.4} \right)^3}\] as \[1124.864\].
Thus, the correct option is option (b).
Note: We have used the distributive property of multiplication to find the product of 12 and \[\left( {10 + 0.4} \right)\]. The distributive property of multiplication states that \[a\left( {b + c} \right) = a \cdot b + a \cdot c\].
We can also use the algebraic identity for the cube of the difference of two numbers to evaluate \[{\left( {10.4} \right)^3}\].
The cube of the difference of two numbers \[a\] and \[b\] is given by the algebraic identity \[{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right)\].
Substituting \[a = 11\] and \[b = 0.6\] in the identity, we get
\[ \Rightarrow {\left( {11 - 0.6} \right)^3} = {11^3} - {\left( {0.6} \right)^3} - 3\left( {11} \right)\left( {0.6} \right)\left( {11 - 0.6} \right)\]
Therefore, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = {11^3} - {\left( {0.6} \right)^3} - 3\left( {11} \right)\left( {0.6} \right)\left( {11 - 0.6} \right)\]
We will simplify the expression on the right hand side to get the required answer.
Applying the exponents on the bases, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1331 - 0.216 - 3\left( {11} \right)\left( {0.6} \right)\left( {11 - 0.6} \right)\]
Multiplying the terms 3, 11, and \[0.6\], we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1331 - 0.216 - 19.8\left( {11 - 0.6} \right)\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1331 - 0.216 - 217.8 + 11.88\]
Now, adding and subtracting the terms in the equation, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1124.864\]
\[\therefore\] We get the exact value of \[{\left( {10.4} \right)^3}\] as \[1124.864\].
Formula Used: The cube of the sum of two numbers \[a\] and \[b\] is given by the algebraic identity \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\].
Complete step-by-step answer:
First, we will write the number \[10.4\] as the sum of two numbers.
Rewriting the number \[10.4\], we get
\[10.4 = 10 + 0.4\]
Substituting \[10.4 = 10 + 0.4\] in the given cube \[{\left( {10.4} \right)^3}\], we get
\[ \Rightarrow {\left( {10.4} \right)^3} = {\left( {10 + 0.4} \right)^3}\]
Now, we know that \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\].
Therefore, substituting \[a = 10\] and \[b = 0.4\] in the identity, we get
\[ \Rightarrow {\left( {10 + 0.4} \right)^3} = {10^3} + {\left( {0.4} \right)^3} + 3\left( {10} \right)\left( {0.4} \right)\left( {10 + 0.4} \right)\]
or
\[ \Rightarrow {\left( {10.4} \right)^3} = {10^3} + {\left( {0.4} \right)^3} + 3\left( {10} \right)\left( {0.4} \right)\left( {10 + 0.4} \right)\]
We will simplify the expression on the right hand side to get the required answer.
Applying the exponents on the bases, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1000 + 0.064 + 3\left( {10} \right)\left( {0.4} \right)\left( {10 + 0.4} \right)\]
Multiplying the terms 3, 10, and \[0.4\], we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1000 + 0.064 + 12\left( {10 + 0.4} \right)\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1000 + 0.064 + 120 + 4.8\]
Now, adding the terms in the equation, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1124.864\]
\[\therefore\] We get the exact value of \[{\left( {10.4} \right)^3}\] as \[1124.864\].
Thus, the correct option is option (b).
Note: We have used the distributive property of multiplication to find the product of 12 and \[\left( {10 + 0.4} \right)\]. The distributive property of multiplication states that \[a\left( {b + c} \right) = a \cdot b + a \cdot c\].
We can also use the algebraic identity for the cube of the difference of two numbers to evaluate \[{\left( {10.4} \right)^3}\].
The cube of the difference of two numbers \[a\] and \[b\] is given by the algebraic identity \[{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right)\].
Substituting \[a = 11\] and \[b = 0.6\] in the identity, we get
\[ \Rightarrow {\left( {11 - 0.6} \right)^3} = {11^3} - {\left( {0.6} \right)^3} - 3\left( {11} \right)\left( {0.6} \right)\left( {11 - 0.6} \right)\]
Therefore, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = {11^3} - {\left( {0.6} \right)^3} - 3\left( {11} \right)\left( {0.6} \right)\left( {11 - 0.6} \right)\]
We will simplify the expression on the right hand side to get the required answer.
Applying the exponents on the bases, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1331 - 0.216 - 3\left( {11} \right)\left( {0.6} \right)\left( {11 - 0.6} \right)\]
Multiplying the terms 3, 11, and \[0.6\], we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1331 - 0.216 - 19.8\left( {11 - 0.6} \right)\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1331 - 0.216 - 217.8 + 11.88\]
Now, adding and subtracting the terms in the equation, we get
\[ \Rightarrow {\left( {10.4} \right)^3} = 1124.864\]
\[\therefore\] We get the exact value of \[{\left( {10.4} \right)^3}\] as \[1124.864\].
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The first successful textile mill was established in class 9 social science CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

A piece of wire 20 cm long is bent into the form of class 9 maths CBSE

Difference Between Plant Cell and Animal Cell
