
Evaluate the following integrals: $\int {\sqrt {2{x^2} + 3x + 4} dx} $.
A) $\left( {4x + 3} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{23\sqrt 2 }}{{32}}\log \left| {\left( {x + \dfrac{3}{4}} \right) + \dfrac{1}{{\sqrt 2 }}.\sqrt {2{x^2} + 3x + 4} } \right| + C$
B) $\dfrac{1}{8}\left( {4x + 3} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{23\sqrt 2 }}{{32}}\log \left| {\left( {x + \dfrac{3}{4}} \right) + \dfrac{1}{{\sqrt 2 }}.\sqrt {2{x^2} + 3x + 4} } \right| + C$
C) $\dfrac{1}{8}\left( {4x + 3} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{\sqrt 2 }}{{32}}\log \left| {\left( {x + \dfrac{3}{4}} \right) + \dfrac{1}{{\sqrt 2 }}.\sqrt {2{x^2} + 3x + 4} } \right| + C$
D) None of these
Answer
579k+ views
Hint:
We have asked in the question to evaluate $\int {\sqrt {2{x^2} + 3x + 4} dx} $.
Then after, we will take out 2 common from the above equation. Then, we will make the equation a perfect square equation for that we will add and subtract $\dfrac{9}{{16}}$.
Then, we will apply $\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C$ on the given equation.
Finally, after solving we will get the required answer.
Complete step by step solution:
It is given in the question to evaluate $\int {\sqrt {2{x^2} + 3x + 4} dx} $ .
Let, $I = \int {\sqrt {2{x^2} + 3x + 4} dx} $
Now, take out 2 common from the above equation, we get,
$I = \int {\sqrt 2 \sqrt {{x^2} + \dfrac{{3x}}{2} + 2} dx} $
To make \[{x^2} + \dfrac{{3x}}{2} + 2\] a perfect square equation we will add and subtract $\dfrac{9}{{16}}$ .
$I = \int {\sqrt 2 \sqrt {{x^2} + \dfrac{{3x}}{2} + \dfrac{9}{{16}} - \dfrac{9}{{16}} + 2} dx} $
$I = \int {\sqrt 2 \sqrt {\left( {{x^2} + \dfrac{{3x}}{2} + \dfrac{9}{{16}}} \right) - \dfrac{9}{{16}} + 2} dx} $
$I = \int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{32 - 9}}{{16}}} dx} $
$I = \int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{23}}{{16}}} dx} $
\[I = \int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + {{\left( {\dfrac{{\sqrt {23} }}{4}} \right)}^2}} dx} \]
Now, the above equation is in the form of $\int {\sqrt {{x^2} + {a^2}} } dx$ where we have $x + \dfrac{3}{4}$ in place of $'x'$and $\dfrac{{\sqrt {23} }}{4}$ in place of $'a'.$
Since, $\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C$ .
Now, apply $\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C$ in the equation \[\int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + {{\left( {\dfrac{{\sqrt {23} }}{4}} \right)}^2}} dx} \] , we get,
\[I = \sqrt 2 \left[ {\dfrac{{x + \dfrac{3}{4}}}{2}\sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{23}}{{16}}} + \dfrac{{\dfrac{{23}}{{16}}}}{2}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{23}}{{16}}} } \right)} \right] + C\]
Now, apply ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$ on $\left( {x + \dfrac{3}{4}} \right)$
\[I = \sqrt 2 \left[ {\dfrac{{4x + 3}}{8}\sqrt {{x^2} + 2 \times x \times \dfrac{3}{4} + \dfrac{9}{{16}} + \dfrac{{23}}{{16}}} + \dfrac{{23}}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{x^2} + 2 \times x \times \dfrac{3}{4} + \dfrac{9}{{16}} + \dfrac{{23}}{{16}}} } \right)} \right] + C\]
\[I = \sqrt 2 \left[ {\dfrac{{4x + 3}}{8}\sqrt {{x^2} + \dfrac{{3x}}{2} + \dfrac{{32}}{{16}}} + \dfrac{{23}}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{x^2} + \dfrac{{3x}}{2} + \dfrac{{32}}{{16}}} } \right)} \right] + C\]
\[I = \sqrt 2 \left[ {\dfrac{{4x + 3}}{8}\sqrt {{x^2} + \dfrac{{3x}}{2} + 2} + \dfrac{{23}}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{x^2} + \dfrac{{3x}}{2} + 2} } \right)} \right] + C\]
\[I = \sqrt 2 \left[ {\left( {\dfrac{{4x + 3}}{8}} \right)\dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }} + \dfrac{{23\sqrt 2 }}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }}} \right)} \right] + C\]
\[\therefore I = \left( {\dfrac{{4x + 3}}{8}} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{23\sqrt 2 }}{{32}}\log \left[ {\left( {x + \dfrac{3}{4}} \right) + \dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }}} \right] + C\]
Hence, $\int {\sqrt {2{x^2} + 3x + 4} dx} = \left( {\dfrac{{4x + 3}}{8}} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{23\sqrt 2 }}{{32}}\log \left[ {\left( {x + \dfrac{3}{4}} \right) + \dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }}} \right] + C$
Therefore, option (B) is correct.
Note:
Some properties of integration:
1) $\int {\dfrac{{dx}}{{\sqrt {{x^2} + {a^2}} }}} = \ln \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C$
2) $\int {\dfrac{{dx}}{{\sqrt {{x^2} - {a^2}} }}} = \ln \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C$
3) $\int {\sqrt {{a^2} - {x^2}} } dx = \dfrac{x}{2}\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a} + C$
4) $\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C$
5) $\int {\sqrt {{x^2} - {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} - {a^2}} - \dfrac{{{a^2}}}{2}\log \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C$
We have asked in the question to evaluate $\int {\sqrt {2{x^2} + 3x + 4} dx} $.
Then after, we will take out 2 common from the above equation. Then, we will make the equation a perfect square equation for that we will add and subtract $\dfrac{9}{{16}}$.
Then, we will apply $\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C$ on the given equation.
Finally, after solving we will get the required answer.
Complete step by step solution:
It is given in the question to evaluate $\int {\sqrt {2{x^2} + 3x + 4} dx} $ .
Let, $I = \int {\sqrt {2{x^2} + 3x + 4} dx} $
Now, take out 2 common from the above equation, we get,
$I = \int {\sqrt 2 \sqrt {{x^2} + \dfrac{{3x}}{2} + 2} dx} $
To make \[{x^2} + \dfrac{{3x}}{2} + 2\] a perfect square equation we will add and subtract $\dfrac{9}{{16}}$ .
$I = \int {\sqrt 2 \sqrt {{x^2} + \dfrac{{3x}}{2} + \dfrac{9}{{16}} - \dfrac{9}{{16}} + 2} dx} $
$I = \int {\sqrt 2 \sqrt {\left( {{x^2} + \dfrac{{3x}}{2} + \dfrac{9}{{16}}} \right) - \dfrac{9}{{16}} + 2} dx} $
$I = \int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{32 - 9}}{{16}}} dx} $
$I = \int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{23}}{{16}}} dx} $
\[I = \int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + {{\left( {\dfrac{{\sqrt {23} }}{4}} \right)}^2}} dx} \]
Now, the above equation is in the form of $\int {\sqrt {{x^2} + {a^2}} } dx$ where we have $x + \dfrac{3}{4}$ in place of $'x'$and $\dfrac{{\sqrt {23} }}{4}$ in place of $'a'.$
Since, $\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C$ .
Now, apply $\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C$ in the equation \[\int {\sqrt 2 \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + {{\left( {\dfrac{{\sqrt {23} }}{4}} \right)}^2}} dx} \] , we get,
\[I = \sqrt 2 \left[ {\dfrac{{x + \dfrac{3}{4}}}{2}\sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{23}}{{16}}} + \dfrac{{\dfrac{{23}}{{16}}}}{2}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{{\left( {x + \dfrac{3}{4}} \right)}^2} + \dfrac{{23}}{{16}}} } \right)} \right] + C\]
Now, apply ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$ on $\left( {x + \dfrac{3}{4}} \right)$
\[I = \sqrt 2 \left[ {\dfrac{{4x + 3}}{8}\sqrt {{x^2} + 2 \times x \times \dfrac{3}{4} + \dfrac{9}{{16}} + \dfrac{{23}}{{16}}} + \dfrac{{23}}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{x^2} + 2 \times x \times \dfrac{3}{4} + \dfrac{9}{{16}} + \dfrac{{23}}{{16}}} } \right)} \right] + C\]
\[I = \sqrt 2 \left[ {\dfrac{{4x + 3}}{8}\sqrt {{x^2} + \dfrac{{3x}}{2} + \dfrac{{32}}{{16}}} + \dfrac{{23}}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{x^2} + \dfrac{{3x}}{2} + \dfrac{{32}}{{16}}} } \right)} \right] + C\]
\[I = \sqrt 2 \left[ {\dfrac{{4x + 3}}{8}\sqrt {{x^2} + \dfrac{{3x}}{2} + 2} + \dfrac{{23}}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \sqrt {{x^2} + \dfrac{{3x}}{2} + 2} } \right)} \right] + C\]
\[I = \sqrt 2 \left[ {\left( {\dfrac{{4x + 3}}{8}} \right)\dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }} + \dfrac{{23\sqrt 2 }}{{32}}\log \left( {\left( {x + \dfrac{3}{4}} \right) + \dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }}} \right)} \right] + C\]
\[\therefore I = \left( {\dfrac{{4x + 3}}{8}} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{23\sqrt 2 }}{{32}}\log \left[ {\left( {x + \dfrac{3}{4}} \right) + \dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }}} \right] + C\]
Hence, $\int {\sqrt {2{x^2} + 3x + 4} dx} = \left( {\dfrac{{4x + 3}}{8}} \right)\sqrt {2{x^2} + 3x + 4} + \dfrac{{23\sqrt 2 }}{{32}}\log \left[ {\left( {x + \dfrac{3}{4}} \right) + \dfrac{{\sqrt {2{x^2} + 3x + 4} }}{{\sqrt 2 }}} \right] + C$
Therefore, option (B) is correct.
Note:
Some properties of integration:
1) $\int {\dfrac{{dx}}{{\sqrt {{x^2} + {a^2}} }}} = \ln \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C$
2) $\int {\dfrac{{dx}}{{\sqrt {{x^2} - {a^2}} }}} = \ln \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C$
3) $\int {\sqrt {{a^2} - {x^2}} } dx = \dfrac{x}{2}\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a} + C$
4) $\int {\sqrt {{x^2} + {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} + {a^2}} + \dfrac{{{a^2}}}{2}\log \left( {x + \sqrt {{x^2} + {a^2}} } \right) + C$
5) $\int {\sqrt {{x^2} - {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} - {a^2}} - \dfrac{{{a^2}}}{2}\log \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

