
Evaluate the following integral $\int{\dfrac{1-\cos x}{1+\cos x}dx}$
Answer
577.8k+ views
Hint: First of all we will find the value of $\cos x$ by converting it into $\cos \left( \dfrac{x}{2}+\dfrac{x}{2} \right)$ and then we will use the formula $\cos \left( A+B \right)=\cos A.\cos B-\operatorname{Sin}A.\sin B$ to find the value of $\cos x$. Now we will calculate the values of $1-\cos x$ and $1+\cos x$ individually by using the value $\cos x$ obtained above. Here we will use the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ to find the values of $1-\cos x$ and $1+\cos x$. From the values of $1-\cos x$ and $1+\cos x$ we will calculate the value of $\dfrac{1-\cos x}{1+\cos x}$, and then we will integrate the obtained value to get the result.
Complete step-by-step solution:
Given that, $\int{\dfrac{1-\cos x}{1+\cos x}dx}$
We are going to write the $x$ value as $\dfrac{x}{2}+\dfrac{x}{2}$ in $\cos $function to find the value of $\cos x$, then we will get
$\cos x=\cos \left( \dfrac{x}{2}+\dfrac{x}{2} \right)$
We know the formula $\cos \left( A+B \right)=\cos A.\cos B-\operatorname{Sin}A.\sin B$, then the value of $\cos \left( \dfrac{x}{2}+\dfrac{x}{2} \right)$ will be written as
$\begin{align}
& \cos x=\cos \left( \dfrac{x}{2}+\dfrac{x}{2} \right) \\
& =\cos \dfrac{x}{2}.\cos \dfrac{x}{2}-\sin \dfrac{x}{2}.\sin \dfrac{x}{2} \\
\end{align}$
We know that $a.a={{a}^{2}}$, hence the values of $\cos \dfrac{x}{2}.\cos \dfrac{x}{2}$ and $\sin \dfrac{x}{2}.\sin \dfrac{x}{2}$ will be written as
$\begin{align}
& \cos x=\cos \dfrac{x}{2}.\cos \dfrac{x}{2}-\sin \dfrac{x}{2}.\sin \dfrac{x}{2} \\
& ={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\
\end{align}$
Here we got the value of $\cos x$ as ${{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}$, i.e.
$\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}....\left( \text{i} \right)$
Now we are going to calculate the values of $1-\cos x$ and $1+\cos x$ from the above equation.
We will add $1$ on both sides of equation $\left( \text{i} \right)$ to get the value of $1+\cos x$, then
$\begin{align}
& \cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\
&\Rightarrow 1+\cos x=1+{{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\
\end{align}$
Rearranging the term in Left Hand Side as
$1+\cos x={{\cos }^{2}}\dfrac{x}{2}+\left( 1-{{\sin }^{2}}\dfrac{x}{2} \right)$
We have trigonometric identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$. From this identity we can get the value$1-{{\sin }^{2}}A={{\cos }^{2}}A$. Then we will have
$\begin{align}
& 1+\cos x={{\cos }^{2}}\dfrac{x}{2}+\left( 1-{{\sin }^{2}}\dfrac{x}{2} \right) \\
& ={{\cos }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2} \\
\end{align}$
We know that $a+a=2a$, then we will get
$\begin{align}
& 1+\cos x={{\cos }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2} \\
&\Rightarrow 1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}....\left( \text{ii} \right) \\
\end{align}$
Now we are going to subtract the value of $\cos x$ obtained in equation $\left( \text{i} \right)$ from $1$ to get the value of $1-\cos x$, then we will have
$1-\cos x=1-\left( {{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \right)$
When we multiplied a negative sign/integer with positive sign/integer we will get negative sign/integer at the same time we will get positive sign/integer when we multiplied a negative sign/integer with the negative sign/integer, then
$\begin{align}
& 1-\cos x=1-\left( {{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \right) \\
& =1-{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2} \\
\end{align}$
We have trigonometric identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$. From this identity we can get the value$1-{{\cos }^{2}}A={{\sin }^{2}}A$. Then we will have
$\begin{align}
& 1-\cos x=1-{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2} \\
&\Rightarrow 1-\cos x={{\sin }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2} \\
&\Rightarrow 1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}.....\left( \text{iii} \right) \\
\end{align}$
From the equations $\left( \text{ii} \right)$ and $\left( \text{iii} \right)$ the value of $\dfrac{1-\cos x}{1+\cos x}$ is
$\begin{align}
& \dfrac{1-\cos x}{1+\cos x}=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}} \\
& ={{\tan }^{2}}\dfrac{x}{2} \\
\end{align}$
We have another trigonometric identity ${{\sec }^{2}}A-{{\tan }^{2}}A=1$. From this identity we have the value ${{\tan }^{2}}A={{\sec }^{2}}A-1$, then
$\begin{align}
& \dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2} \\
& ={{\sec }^{2}}\dfrac{x}{2}-1 \\
\end{align}$
Now integrating the above equation, then
$\begin{align}
& \int{\dfrac{1-\cos x}{1+\cos x}dx}=\int{\left( {{\sec }^{2}}\dfrac{x}{2}-1 \right)}dx \\
& =\int{{{\sec }^{2}}\dfrac{x}{2}dx}-\int{dx} \\
\end{align}$
We have $\int{{{\sec }^{2}}A}dA=\tan A+C$ and $\int{1dx=x+C}$, substituting above value in the integration, then
$\int{\dfrac{1-\cos x}{1+\cos x}dx}=2\tan \dfrac{x}{2}-x+C$
Hence, we have $\int{\dfrac{1-\cos x}{1+\cos x}dx}=2\tan \dfrac{x}{2}-x+C$
Note: In this problem we do many substitutions from trigonometric identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$, while substituting value there is a chance of making a mistake when you don’t write this identity in the problem. It is advisable to write the trigonometric identities when we are going to use that identity.
Complete step-by-step solution:
Given that, $\int{\dfrac{1-\cos x}{1+\cos x}dx}$
We are going to write the $x$ value as $\dfrac{x}{2}+\dfrac{x}{2}$ in $\cos $function to find the value of $\cos x$, then we will get
$\cos x=\cos \left( \dfrac{x}{2}+\dfrac{x}{2} \right)$
We know the formula $\cos \left( A+B \right)=\cos A.\cos B-\operatorname{Sin}A.\sin B$, then the value of $\cos \left( \dfrac{x}{2}+\dfrac{x}{2} \right)$ will be written as
$\begin{align}
& \cos x=\cos \left( \dfrac{x}{2}+\dfrac{x}{2} \right) \\
& =\cos \dfrac{x}{2}.\cos \dfrac{x}{2}-\sin \dfrac{x}{2}.\sin \dfrac{x}{2} \\
\end{align}$
We know that $a.a={{a}^{2}}$, hence the values of $\cos \dfrac{x}{2}.\cos \dfrac{x}{2}$ and $\sin \dfrac{x}{2}.\sin \dfrac{x}{2}$ will be written as
$\begin{align}
& \cos x=\cos \dfrac{x}{2}.\cos \dfrac{x}{2}-\sin \dfrac{x}{2}.\sin \dfrac{x}{2} \\
& ={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\
\end{align}$
Here we got the value of $\cos x$ as ${{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}$, i.e.
$\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}....\left( \text{i} \right)$
Now we are going to calculate the values of $1-\cos x$ and $1+\cos x$ from the above equation.
We will add $1$ on both sides of equation $\left( \text{i} \right)$ to get the value of $1+\cos x$, then
$\begin{align}
& \cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\
&\Rightarrow 1+\cos x=1+{{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\
\end{align}$
Rearranging the term in Left Hand Side as
$1+\cos x={{\cos }^{2}}\dfrac{x}{2}+\left( 1-{{\sin }^{2}}\dfrac{x}{2} \right)$
We have trigonometric identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$. From this identity we can get the value$1-{{\sin }^{2}}A={{\cos }^{2}}A$. Then we will have
$\begin{align}
& 1+\cos x={{\cos }^{2}}\dfrac{x}{2}+\left( 1-{{\sin }^{2}}\dfrac{x}{2} \right) \\
& ={{\cos }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2} \\
\end{align}$
We know that $a+a=2a$, then we will get
$\begin{align}
& 1+\cos x={{\cos }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2} \\
&\Rightarrow 1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}....\left( \text{ii} \right) \\
\end{align}$
Now we are going to subtract the value of $\cos x$ obtained in equation $\left( \text{i} \right)$ from $1$ to get the value of $1-\cos x$, then we will have
$1-\cos x=1-\left( {{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \right)$
When we multiplied a negative sign/integer with positive sign/integer we will get negative sign/integer at the same time we will get positive sign/integer when we multiplied a negative sign/integer with the negative sign/integer, then
$\begin{align}
& 1-\cos x=1-\left( {{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \right) \\
& =1-{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2} \\
\end{align}$
We have trigonometric identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$. From this identity we can get the value$1-{{\cos }^{2}}A={{\sin }^{2}}A$. Then we will have
$\begin{align}
& 1-\cos x=1-{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2} \\
&\Rightarrow 1-\cos x={{\sin }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2} \\
&\Rightarrow 1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}.....\left( \text{iii} \right) \\
\end{align}$
From the equations $\left( \text{ii} \right)$ and $\left( \text{iii} \right)$ the value of $\dfrac{1-\cos x}{1+\cos x}$ is
$\begin{align}
& \dfrac{1-\cos x}{1+\cos x}=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2{{\cos }^{2}}\dfrac{x}{2}} \\
& ={{\tan }^{2}}\dfrac{x}{2} \\
\end{align}$
We have another trigonometric identity ${{\sec }^{2}}A-{{\tan }^{2}}A=1$. From this identity we have the value ${{\tan }^{2}}A={{\sec }^{2}}A-1$, then
$\begin{align}
& \dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2} \\
& ={{\sec }^{2}}\dfrac{x}{2}-1 \\
\end{align}$
Now integrating the above equation, then
$\begin{align}
& \int{\dfrac{1-\cos x}{1+\cos x}dx}=\int{\left( {{\sec }^{2}}\dfrac{x}{2}-1 \right)}dx \\
& =\int{{{\sec }^{2}}\dfrac{x}{2}dx}-\int{dx} \\
\end{align}$
We have $\int{{{\sec }^{2}}A}dA=\tan A+C$ and $\int{1dx=x+C}$, substituting above value in the integration, then
$\int{\dfrac{1-\cos x}{1+\cos x}dx}=2\tan \dfrac{x}{2}-x+C$
Hence, we have $\int{\dfrac{1-\cos x}{1+\cos x}dx}=2\tan \dfrac{x}{2}-x+C$
Note: In this problem we do many substitutions from trigonometric identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$, while substituting value there is a chance of making a mistake when you don’t write this identity in the problem. It is advisable to write the trigonometric identities when we are going to use that identity.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

