
Evaluate the following integral:
$\int {\tan x.\tan 2x.\tan 3xdx} $
${\text{A}}{\text{. - }}\dfrac{1}{3}\ln |\cos (3x)| + \dfrac{1}{2}\ln |\cos (2x)| + \ln |\cos (x)| + C$
${\text{B}}{\text{. - }}\ln |\sec x| - \dfrac{1}{2}\ln |\sec (2x)| + \dfrac{1}{2}\ln |\sec 3x| + C$
${\text{C}}{\text{. }}\ln |\cos (x)| + \ln |\sec (2x)| + \ln |\cos (3x)| + C$
${\text{D}}{\text{. - }}\dfrac{1}{3}\ln |\sec (3x)| + \dfrac{1}{2}\ln |\sec (2x)| + \ln |\sec (x)| + C$
Answer
613.5k+ views
Hint- Use the formula, $\tan (3x) = \dfrac{{\tan x + \tan 2x}}{{1 - \tan x.\tan 2x}}$ to evaluate the given integral. Try to convert the given terms using this formula and then solve.
Complete step-by-step answer:
We have been given in the question to evaluate the integral, \[\int {\tan x.\tan 2x.\tan 3xdx} \].
Now we know that $\tan (3x) = \dfrac{{\tan x + \tan 2x}}{{1 - \tan x.\tan 2x}}$.
Using the above formula, we can write-
$\tan (3x).(1 - \tan x.\tan 2x) = \tan x + \tan 2x$
Solving it further, we get-
$
\tan (3x) - \tan x.\tan (2x).\tan (3x) = \tan x + \tan 2x \\
\therefore \tan x.\tan (2x).\tan (3x) = \tan (3x) - \tan (x) - \tan (2x) \to (1) \\
$
Now, the given integral is, \[\int {\tan x.\tan 2x.\tan 3xdx} \]
Using the equation (1), we can write the integral as-
$\int {\tan (3x) - \tan (x) - \tan (2x).dx} $
Let $I = \int {\tan (3x) - \tan (x) - \tan (2x).dx} $
Now, as we know $\int {\tan (x).dx = \ln |\sec x|} $, using this result to evaluate the above integral.
\[
I = \int {\tan (3x) - \tan (x) - \tan (2x).dx} \\
\Rightarrow I = \int {\tan (3x).dx - } \int {\tan (x).dx} - \int {\tan (2x).dx} \\
\Rightarrow I = \dfrac{1}{3}\ln |\sec (3x)| - \ln |\sec x| - \dfrac{1}{2}\ln |\sec (2x)| + C \\
\]
Now we can write,
\[ = \dfrac{1}{3}\ln |\dfrac{1}{{\cos (3x)}}| - \ln |\dfrac{1}{{\cos x}}| - \dfrac{1}{2}\ln |\dfrac{1}{{\cos (2x)}}| + C\]
Also, we know- $\ln \dfrac{a}{b} = \ln a - \ln b$ using this we get-
\[
I = \dfrac{1}{3}(\ln (1) - \ln |\cos (3x|) - (\ln (1) - \ln |\cos x|) - \dfrac{1}{2}(\ln (1) - \ln |\cos (2x)| + C \\
\because \ln (1) = 0 \\
\Rightarrow I = - \dfrac{1}{3}(\ln |\cos (3x)|) + \ln |\cos x| + \dfrac{1}{2}(\ln |\cos (2x)|) + C \\
\]
Therefore, the above integral evaluates to-\[\int {\tan x.\tan 2x.\tan 3xdx} = - \dfrac{1}{3}\ln |\cos (3x)| + \dfrac{1}{2}\ln |\cos (2x)| + \ln |\cos (x)| + C\]
Hence, the correct option is option ${\text{A}}{\text{. - }}\dfrac{1}{3}\ln |\cos (3x)| + \dfrac{1}{2}\ln |\cos (2x)| + \ln |\cos (x)| + C$.
Note- Whenever such types of questions appear, try solving step by step. As mentioned in the solution, first write the standard formula of $\tan (3x)$, and then try to express $\tan x.\tan 2x.\tan 3x$in terms of $\tan (3x) - \tan (x) - \tan (2x)$, which will be easier to integrate. And then evaluate the integral by using the formula $\int {\tan (x).dx = \ln |\sec x|} $.
Complete step-by-step answer:
We have been given in the question to evaluate the integral, \[\int {\tan x.\tan 2x.\tan 3xdx} \].
Now we know that $\tan (3x) = \dfrac{{\tan x + \tan 2x}}{{1 - \tan x.\tan 2x}}$.
Using the above formula, we can write-
$\tan (3x).(1 - \tan x.\tan 2x) = \tan x + \tan 2x$
Solving it further, we get-
$
\tan (3x) - \tan x.\tan (2x).\tan (3x) = \tan x + \tan 2x \\
\therefore \tan x.\tan (2x).\tan (3x) = \tan (3x) - \tan (x) - \tan (2x) \to (1) \\
$
Now, the given integral is, \[\int {\tan x.\tan 2x.\tan 3xdx} \]
Using the equation (1), we can write the integral as-
$\int {\tan (3x) - \tan (x) - \tan (2x).dx} $
Let $I = \int {\tan (3x) - \tan (x) - \tan (2x).dx} $
Now, as we know $\int {\tan (x).dx = \ln |\sec x|} $, using this result to evaluate the above integral.
\[
I = \int {\tan (3x) - \tan (x) - \tan (2x).dx} \\
\Rightarrow I = \int {\tan (3x).dx - } \int {\tan (x).dx} - \int {\tan (2x).dx} \\
\Rightarrow I = \dfrac{1}{3}\ln |\sec (3x)| - \ln |\sec x| - \dfrac{1}{2}\ln |\sec (2x)| + C \\
\]
Now we can write,
\[ = \dfrac{1}{3}\ln |\dfrac{1}{{\cos (3x)}}| - \ln |\dfrac{1}{{\cos x}}| - \dfrac{1}{2}\ln |\dfrac{1}{{\cos (2x)}}| + C\]
Also, we know- $\ln \dfrac{a}{b} = \ln a - \ln b$ using this we get-
\[
I = \dfrac{1}{3}(\ln (1) - \ln |\cos (3x|) - (\ln (1) - \ln |\cos x|) - \dfrac{1}{2}(\ln (1) - \ln |\cos (2x)| + C \\
\because \ln (1) = 0 \\
\Rightarrow I = - \dfrac{1}{3}(\ln |\cos (3x)|) + \ln |\cos x| + \dfrac{1}{2}(\ln |\cos (2x)|) + C \\
\]
Therefore, the above integral evaluates to-\[\int {\tan x.\tan 2x.\tan 3xdx} = - \dfrac{1}{3}\ln |\cos (3x)| + \dfrac{1}{2}\ln |\cos (2x)| + \ln |\cos (x)| + C\]
Hence, the correct option is option ${\text{A}}{\text{. - }}\dfrac{1}{3}\ln |\cos (3x)| + \dfrac{1}{2}\ln |\cos (2x)| + \ln |\cos (x)| + C$.
Note- Whenever such types of questions appear, try solving step by step. As mentioned in the solution, first write the standard formula of $\tan (3x)$, and then try to express $\tan x.\tan 2x.\tan 3x$in terms of $\tan (3x) - \tan (x) - \tan (2x)$, which will be easier to integrate. And then evaluate the integral by using the formula $\int {\tan (x).dx = \ln |\sec x|} $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

