
Evaluate the following indefinite integral \[\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4}}x-{{x}^{4}}}}dx\]
(a) $\dfrac{1}{2}\ln \left( \dfrac{x}{\ln x} \right)-\dfrac{1}{4}\ln \left( {{\ln }^{2}}x-{{x}^{2}} \right)+C$,
(b) $\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+C$,
(c) $\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)+x}{\ln \left( x \right)-x} \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+C$,
(d) $\dfrac{1}{4}\left( \ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)+{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right) \right)+C$.
Answer
587.7k+ views
Hint: We start solving the problem by assigning a variable to the given integral. We then make the necessary arrangements required in integrand to divide it into the sum of two integrals. We then calculate each integral separately by assuming $\dfrac{\ln x}{x}=t$ in each integral. We then use the integration formulas $\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}=\dfrac{1}{2a}\ln \left( \dfrac{x-a}{x+a} \right)+C$ and $\int{\dfrac{dx}{{{x}^{2}}+{{a}^{2}}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)+C$ to find the integrals in terms of ‘t’. We then substitute $\dfrac{\ln x}{x}$ in place of t to get the required result.
Complete step-by-step answer:
According to the problem, we need to solve the indefinite integral \[\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4}}x-{{x}^{4}}}}dx\]. Let us assume the integral be I.
So, we have $I=\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4}}x-{{x}^{4}}}}dx$ ----(1).
Let us multiply and divide integrand with 2.
$\Rightarrow I=\int{\dfrac{2{{x}^{2}}\left( 1-\ln x \right)}{2\left( {{\ln }^{4}}x-{{x}^{4}} \right)}}dx$.
$\Rightarrow I=\dfrac{1}{2}\int{\dfrac{2{{x}^{2}}\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx$.
$\Rightarrow I=\dfrac{1}{2}\int{\dfrac{\left( 2{{x}^{2}}+{{\ln }^{2}}x-{{\ln }^{2}}x \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx$.
$\Rightarrow I=\dfrac{1}{2}\int{\dfrac{\left( {{\ln }^{2}}x+{{x}^{2}}-{{\ln }^{2}}x+{{x}^{2}} \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx$.
$\Rightarrow I=\dfrac{1}{2}\int{\dfrac{\left( \left( {{\ln }^{2}}x+{{x}^{2}} \right)-\left( {{\ln }^{2}}x-{{x}^{2}} \right) \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx$.
\[\Rightarrow I=\dfrac{1}{2}\int{\left( \dfrac{\left( {{\ln }^{2}}x+{{x}^{2}} \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)} \right)-\left( \dfrac{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)} \right)}dx\].
\[\Rightarrow I=\dfrac{1}{2}\int{\left( \dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)} \right)-\left( \dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)} \right)}dx\] ----(2).
We know that $\int{f\left( x \right)+g\left( x \right)}dx=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}$. We use this result in equation (2).
\[\Rightarrow I=\dfrac{1}{2}\left( \int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)}dx} \right)-\dfrac{1}{2}\left( \int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)}dx} \right)\].
Let us assume \[\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)}dx}\] as ${{I}_{1}}$ and \[\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)}dx}\] as ${{I}_{2}}$.
So, we get \[I=\dfrac{1}{2}{{I}_{1}}-\dfrac{1}{2}{{I}_{2}}\] ---(3).
Let us solve ${{I}_{1}}$ and ${{I}_{2}}$ separately and then substitute in equation (3).
Let us solve ${{I}_{1}}$ first. So, we have \[{{I}_{1}}=\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)}dx}\].
Let us take ${{x}^{2}}$ common in denominator of the integrand.
\[\Rightarrow {{I}_{1}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( \dfrac{{{\ln }^{2}}x}{{{x}^{2}}}-1 \right)}dx}\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( {{\left( \dfrac{\ln x}{x} \right)}^{2}}-1 \right)}dx}\] ---(4).
Let us assume $\dfrac{\ln x}{x}=t$ ---(5). We differentiate in both sides.
$\Rightarrow d\left( \dfrac{\ln x}{x} \right)=dt$.
We know that $d\left( \dfrac{u}{v} \right)=\dfrac{vdu-udv}{{{v}^{2}}}$.
$\Rightarrow \dfrac{\left( x \right)d\left( \ln x \right)-\left( \ln x \right)d\left( x \right)}{{{x}^{2}}}=dt$.
We know that $d\left( \ln x \right)=\dfrac{1}{x}dx$.
$\Rightarrow \dfrac{\left( x \right)\left( \dfrac{1}{x} \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt$.
$\Rightarrow \dfrac{\left( 1 \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt$.
$\Rightarrow \dfrac{\left( 1-\ln x \right)}{{{x}^{2}}}dx=dt$ ---(6).
Let us substitute equations (5) and (6) in equation (4).
\[\Rightarrow {{I}_{1}}=\int{\dfrac{dt}{{{t}^{2}}-1}}\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{dt}{{{t}^{2}}-{{1}^{2}}}}\].
We know that $\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}=\dfrac{1}{2a}\ln \left( \dfrac{x-a}{x+a} \right)+C$.
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2\left( 1 \right)}\ln \left( \dfrac{t-1}{t+1} \right)+{{C}_{1}}\].
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{t-1}{t+1} \right)+{{C}_{1}}\].
From equation (5), we have $t=\dfrac{\ln x}{x}$.
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{\left( \dfrac{\ln x}{x} \right)-1}{\left( \dfrac{\ln x}{x} \right)+1} \right)+{{C}_{1}}\].
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{\left( \dfrac{\ln x-x}{x} \right)}{\left( \dfrac{\ln x+x}{x} \right)} \right)+{{C}_{1}}\].
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{\ln x-x}{\ln x+x} \right)+{{C}_{1}}\] ---(7).
Now, let us solve ${{I}_{2}}$ first. So, we have \[{{I}_{2}}=\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)}dx}\].
Let us take ${{x}^{2}}$ common in denominator of the integrand.
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( \dfrac{{{\ln }^{2}}x}{{{x}^{2}}}+1 \right)}dx}\].
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( {{\left( \dfrac{\ln x}{x} \right)}^{2}}+1 \right)}dx}\]---(8).
Let us assume $\dfrac{\ln x}{x}=t$ ---(9). We differentiate in both sides.
$\Rightarrow d\left( \dfrac{\ln x}{x} \right)=dt$.
We know that $d\left( \dfrac{u}{v} \right)=\dfrac{vdu-udv}{{{v}^{2}}}$.
$\Rightarrow \dfrac{\left( x \right)d\left( \ln x \right)-\left( \ln x \right)d\left( x \right)}{{{x}^{2}}}=dt$.
We know that $d\left( \ln x \right)=\dfrac{1}{x}dx$.
$\Rightarrow \dfrac{\left( x \right)\left( \dfrac{1}{x} \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt$.
$\Rightarrow \dfrac{\left( 1 \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt$.
$\Rightarrow \dfrac{\left( 1-\ln x \right)}{{{x}^{2}}}dx=dt$ ---(10).
Let us substitute equations (9) and (10) in equation (8).
\[\Rightarrow {{I}_{2}}=\int{\dfrac{dt}{{{t}^{2}}+1}}\].
\[\Rightarrow {{I}_{2}}=\int{\dfrac{dt}{{{t}^{2}}+{{1}^{2}}}}\].
We know that $\int{\dfrac{dx}{{{x}^{2}}+{{a}^{2}}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)+C$.
\[\Rightarrow {{I}_{2}}=\dfrac{1}{1}{{\tan }^{-1}}\left( \dfrac{t}{1} \right)+{{C}_{2}}\].
\[\Rightarrow {{I}_{2}}={{\tan }^{-1}}\left( t \right)+{{C}_{2}}\].
From equation (5), we have $t=\dfrac{\ln x}{x}$.
\[\Rightarrow {{I}_{2}}={{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+{{C}_{2}}\] ---(11).
Let us substitute equations (7) and (11) in equation (3).
$\Rightarrow I=\dfrac{1}{2}\left( \dfrac{1}{2}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)+{{C}_{1}} \right)-\dfrac{1}{2}\left( {{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+{{C}_{2}} \right)$.
$\Rightarrow I=\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)+\dfrac{{{C}_{1}}}{2}-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)-\dfrac{{{C}_{2}}}{2}$.
Let us $\dfrac{{{C}_{1}}}{2}-\dfrac{{{C}_{2}}}{2}$ as C, which is a constant of integration.
$\Rightarrow I=\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+C$.
So, we have found \[\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4}}x-{{x}^{4}}}}dx=\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+C\].
The correct option for the given problem is (b).
Note: We should confuse ${{\ln }^{2}}x$ with $\ln {{x}^{2}}$, we get ${{\ln }^{2}}x$ by squaring the $\ln x$ i.e., ${{\ln }^{2}}x={{\left( \ln x \right)}^{2}}$. We should not confuse the formulas of integration. We have high chance of confusing the formula $\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}=\dfrac{1}{2a}\ln \left( \dfrac{x-a}{x+a} \right)+C$ with $\int{\dfrac{dx}{{{a}^{2}}-{{x}^{2}}}}=\dfrac{1}{2a}\ln \left( \dfrac{a+x}{a-x} \right)+C$. We should not forget to re-substitute the function of t again in the integral again. Similarly, we can also expect problems to find the given integral with limits.
Complete step-by-step answer:
According to the problem, we need to solve the indefinite integral \[\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4}}x-{{x}^{4}}}}dx\]. Let us assume the integral be I.
So, we have $I=\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4}}x-{{x}^{4}}}}dx$ ----(1).
Let us multiply and divide integrand with 2.
$\Rightarrow I=\int{\dfrac{2{{x}^{2}}\left( 1-\ln x \right)}{2\left( {{\ln }^{4}}x-{{x}^{4}} \right)}}dx$.
$\Rightarrow I=\dfrac{1}{2}\int{\dfrac{2{{x}^{2}}\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx$.
$\Rightarrow I=\dfrac{1}{2}\int{\dfrac{\left( 2{{x}^{2}}+{{\ln }^{2}}x-{{\ln }^{2}}x \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx$.
$\Rightarrow I=\dfrac{1}{2}\int{\dfrac{\left( {{\ln }^{2}}x+{{x}^{2}}-{{\ln }^{2}}x+{{x}^{2}} \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx$.
$\Rightarrow I=\dfrac{1}{2}\int{\dfrac{\left( \left( {{\ln }^{2}}x+{{x}^{2}} \right)-\left( {{\ln }^{2}}x-{{x}^{2}} \right) \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)}}dx$.
\[\Rightarrow I=\dfrac{1}{2}\int{\left( \dfrac{\left( {{\ln }^{2}}x+{{x}^{2}} \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)} \right)-\left( \dfrac{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)\left( {{\ln }^{2}}x+{{x}^{2}} \right)} \right)}dx\].
\[\Rightarrow I=\dfrac{1}{2}\int{\left( \dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)} \right)-\left( \dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)} \right)}dx\] ----(2).
We know that $\int{f\left( x \right)+g\left( x \right)}dx=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}$. We use this result in equation (2).
\[\Rightarrow I=\dfrac{1}{2}\left( \int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)}dx} \right)-\dfrac{1}{2}\left( \int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)}dx} \right)\].
Let us assume \[\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)}dx}\] as ${{I}_{1}}$ and \[\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)}dx}\] as ${{I}_{2}}$.
So, we get \[I=\dfrac{1}{2}{{I}_{1}}-\dfrac{1}{2}{{I}_{2}}\] ---(3).
Let us solve ${{I}_{1}}$ and ${{I}_{2}}$ separately and then substitute in equation (3).
Let us solve ${{I}_{1}}$ first. So, we have \[{{I}_{1}}=\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x-{{x}^{2}} \right)}dx}\].
Let us take ${{x}^{2}}$ common in denominator of the integrand.
\[\Rightarrow {{I}_{1}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( \dfrac{{{\ln }^{2}}x}{{{x}^{2}}}-1 \right)}dx}\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( {{\left( \dfrac{\ln x}{x} \right)}^{2}}-1 \right)}dx}\] ---(4).
Let us assume $\dfrac{\ln x}{x}=t$ ---(5). We differentiate in both sides.
$\Rightarrow d\left( \dfrac{\ln x}{x} \right)=dt$.
We know that $d\left( \dfrac{u}{v} \right)=\dfrac{vdu-udv}{{{v}^{2}}}$.
$\Rightarrow \dfrac{\left( x \right)d\left( \ln x \right)-\left( \ln x \right)d\left( x \right)}{{{x}^{2}}}=dt$.
We know that $d\left( \ln x \right)=\dfrac{1}{x}dx$.
$\Rightarrow \dfrac{\left( x \right)\left( \dfrac{1}{x} \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt$.
$\Rightarrow \dfrac{\left( 1 \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt$.
$\Rightarrow \dfrac{\left( 1-\ln x \right)}{{{x}^{2}}}dx=dt$ ---(6).
Let us substitute equations (5) and (6) in equation (4).
\[\Rightarrow {{I}_{1}}=\int{\dfrac{dt}{{{t}^{2}}-1}}\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{dt}{{{t}^{2}}-{{1}^{2}}}}\].
We know that $\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}=\dfrac{1}{2a}\ln \left( \dfrac{x-a}{x+a} \right)+C$.
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2\left( 1 \right)}\ln \left( \dfrac{t-1}{t+1} \right)+{{C}_{1}}\].
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{t-1}{t+1} \right)+{{C}_{1}}\].
From equation (5), we have $t=\dfrac{\ln x}{x}$.
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{\left( \dfrac{\ln x}{x} \right)-1}{\left( \dfrac{\ln x}{x} \right)+1} \right)+{{C}_{1}}\].
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{\left( \dfrac{\ln x-x}{x} \right)}{\left( \dfrac{\ln x+x}{x} \right)} \right)+{{C}_{1}}\].
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\ln \left( \dfrac{\ln x-x}{\ln x+x} \right)+{{C}_{1}}\] ---(7).
Now, let us solve ${{I}_{2}}$ first. So, we have \[{{I}_{2}}=\int{\dfrac{\left( 1-\ln x \right)}{\left( {{\ln }^{2}}x+{{x}^{2}} \right)}dx}\].
Let us take ${{x}^{2}}$ common in denominator of the integrand.
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( \dfrac{{{\ln }^{2}}x}{{{x}^{2}}}+1 \right)}dx}\].
\[\Rightarrow {{I}_{2}}=\int{\dfrac{\left( 1-\ln x \right)}{{{x}^{2}}\left( {{\left( \dfrac{\ln x}{x} \right)}^{2}}+1 \right)}dx}\]---(8).
Let us assume $\dfrac{\ln x}{x}=t$ ---(9). We differentiate in both sides.
$\Rightarrow d\left( \dfrac{\ln x}{x} \right)=dt$.
We know that $d\left( \dfrac{u}{v} \right)=\dfrac{vdu-udv}{{{v}^{2}}}$.
$\Rightarrow \dfrac{\left( x \right)d\left( \ln x \right)-\left( \ln x \right)d\left( x \right)}{{{x}^{2}}}=dt$.
We know that $d\left( \ln x \right)=\dfrac{1}{x}dx$.
$\Rightarrow \dfrac{\left( x \right)\left( \dfrac{1}{x} \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt$.
$\Rightarrow \dfrac{\left( 1 \right)dx-\left( \ln x \right)dx}{{{x}^{2}}}=dt$.
$\Rightarrow \dfrac{\left( 1-\ln x \right)}{{{x}^{2}}}dx=dt$ ---(10).
Let us substitute equations (9) and (10) in equation (8).
\[\Rightarrow {{I}_{2}}=\int{\dfrac{dt}{{{t}^{2}}+1}}\].
\[\Rightarrow {{I}_{2}}=\int{\dfrac{dt}{{{t}^{2}}+{{1}^{2}}}}\].
We know that $\int{\dfrac{dx}{{{x}^{2}}+{{a}^{2}}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)+C$.
\[\Rightarrow {{I}_{2}}=\dfrac{1}{1}{{\tan }^{-1}}\left( \dfrac{t}{1} \right)+{{C}_{2}}\].
\[\Rightarrow {{I}_{2}}={{\tan }^{-1}}\left( t \right)+{{C}_{2}}\].
From equation (5), we have $t=\dfrac{\ln x}{x}$.
\[\Rightarrow {{I}_{2}}={{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+{{C}_{2}}\] ---(11).
Let us substitute equations (7) and (11) in equation (3).
$\Rightarrow I=\dfrac{1}{2}\left( \dfrac{1}{2}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)+{{C}_{1}} \right)-\dfrac{1}{2}\left( {{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+{{C}_{2}} \right)$.
$\Rightarrow I=\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)+\dfrac{{{C}_{1}}}{2}-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)-\dfrac{{{C}_{2}}}{2}$.
Let us $\dfrac{{{C}_{1}}}{2}-\dfrac{{{C}_{2}}}{2}$ as C, which is a constant of integration.
$\Rightarrow I=\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+C$.
So, we have found \[\int{\dfrac{{{x}^{2}}\left( 1-\ln x \right)}{{{\ln }^{4}}x-{{x}^{4}}}}dx=\dfrac{1}{4}\ln \left( \dfrac{\ln \left( x \right)-x}{\ln \left( x \right)+x} \right)-\dfrac{1}{2}{{\tan }^{-1}}\left( \dfrac{\ln x}{x} \right)+C\].
The correct option for the given problem is (b).
Note: We should confuse ${{\ln }^{2}}x$ with $\ln {{x}^{2}}$, we get ${{\ln }^{2}}x$ by squaring the $\ln x$ i.e., ${{\ln }^{2}}x={{\left( \ln x \right)}^{2}}$. We should not confuse the formulas of integration. We have high chance of confusing the formula $\int{\dfrac{dx}{{{x}^{2}}-{{a}^{2}}}}=\dfrac{1}{2a}\ln \left( \dfrac{x-a}{x+a} \right)+C$ with $\int{\dfrac{dx}{{{a}^{2}}-{{x}^{2}}}}=\dfrac{1}{2a}\ln \left( \dfrac{a+x}{a-x} \right)+C$. We should not forget to re-substitute the function of t again in the integral again. Similarly, we can also expect problems to find the given integral with limits.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

