
Evaluate the following definite integral:
$\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}{\cot xdx}$
Answer
533.4k+ views
Hint: In this question we have to solve the given definite integral. We will first convert the function given as $\cot x=\dfrac{\cos x}{\sin x}$ . Then by using the integration formula we will solve the integral. Then after solving we will substitute the limits given and then simplifying the obtained equation we will get the desired answer.
Complete step by step solution:
We have been given a definite integral $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}{\cot xdx}$.
We have to solve the given integral.
$= \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}{\cot xdx}$
Now, we know that $\cot x=\dfrac{\cos x}{\sin x}$.
Now, substituting the values we will get
$= \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{\sin x}dx}$
Now, we know that $\int{\dfrac{f'(x)}{f(x)}dx=\log \left| f\left( x \right) \right|}$
Here we have $f\left( x \right)=\sin xdx\text{ and }f'\left( x \right)=\cos x$
So by applying the formula to the integral we will get
$= \log \left| \sin x \right|_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}$
Now, putting the limits we will get
$= \log \left| \sin \dfrac{\pi }{2} \right|-\log \left| \sin \dfrac{\pi }{4} \right|$
Now, we know that $\sin \dfrac{\pi }{2}=1\text{ and }\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$
Now, substituting the values we will get
$\begin{align}
& = \log \left| 1 \right|-\log \left| \dfrac{1}{\sqrt{2}} \right| \\
& = \dfrac{1}{2}\log 2 \\
\end{align}$
Hence above is the required value of definite integral.
Note: Alternatively we can also solve the integral $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{\sin x}dx}$ by using the substitution method. We will substitute the function $\sin x=u$ then we get $du=\cos xdx$. Then we will substitute the values in the given integral, then we will get
$= \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}{\dfrac{1}{u}du}$
Now, we know that $\int{\dfrac{1}{f(x)}dx=\log \left| f\left( x \right) \right|}$
Then simplifying the above obtained equation we will get
$= \left| \log u \right|_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}$
Now, again substituting $\sin x=u$we will get
$= \left| \log \sin x \right|_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}$
Now, putting the limits we will get
$= \log \left| \sin \dfrac{\pi }{2} \right|-\log \left| \sin \dfrac{\pi }{4} \right|$
Now, we know that $\sin \dfrac{\pi }{2}=1\text{ and }\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$
Now, substituting the values we will get
$\begin{align}
& = \log \left| 1 \right|-\log \left| \dfrac{1}{\sqrt{2}} \right| \\
& = \dfrac{1}{2}\log 2 \\
\end{align}$
Hence above is the required value of definite integral.
Complete step by step solution:
We have been given a definite integral $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}{\cot xdx}$.
We have to solve the given integral.
$= \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}{\cot xdx}$
Now, we know that $\cot x=\dfrac{\cos x}{\sin x}$.
Now, substituting the values we will get
$= \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{\sin x}dx}$
Now, we know that $\int{\dfrac{f'(x)}{f(x)}dx=\log \left| f\left( x \right) \right|}$
Here we have $f\left( x \right)=\sin xdx\text{ and }f'\left( x \right)=\cos x$
So by applying the formula to the integral we will get
$= \log \left| \sin x \right|_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}$
Now, putting the limits we will get
$= \log \left| \sin \dfrac{\pi }{2} \right|-\log \left| \sin \dfrac{\pi }{4} \right|$
Now, we know that $\sin \dfrac{\pi }{2}=1\text{ and }\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$
Now, substituting the values we will get
$\begin{align}
& = \log \left| 1 \right|-\log \left| \dfrac{1}{\sqrt{2}} \right| \\
& = \dfrac{1}{2}\log 2 \\
\end{align}$
Hence above is the required value of definite integral.
Note: Alternatively we can also solve the integral $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}{\dfrac{\cos x}{\sin x}dx}$ by using the substitution method. We will substitute the function $\sin x=u$ then we get $du=\cos xdx$. Then we will substitute the values in the given integral, then we will get
$= \int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}{\dfrac{1}{u}du}$
Now, we know that $\int{\dfrac{1}{f(x)}dx=\log \left| f\left( x \right) \right|}$
Then simplifying the above obtained equation we will get
$= \left| \log u \right|_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}$
Now, again substituting $\sin x=u$we will get
$= \left| \log \sin x \right|_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}$
Now, putting the limits we will get
$= \log \left| \sin \dfrac{\pi }{2} \right|-\log \left| \sin \dfrac{\pi }{4} \right|$
Now, we know that $\sin \dfrac{\pi }{2}=1\text{ and }\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$
Now, substituting the values we will get
$\begin{align}
& = \log \left| 1 \right|-\log \left| \dfrac{1}{\sqrt{2}} \right| \\
& = \dfrac{1}{2}\log 2 \\
\end{align}$
Hence above is the required value of definite integral.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

