
Evaluate the definite integral, \[\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}dx}\] .
Answer
595.5k+ views
Hint: Assume \[I=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}dx}\] where \[{{I}_{1}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}-10{{x}^{5}}-7{{x}^{3}}+x}{{{x}^{2}}+2}dx}\] and \[{{I}_{2}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{3{{x}^{6}}-12{{x}^{2}}+1}{{{x}^{2}}+2}dx}\] . We also know that \[f(x)={{x}^{n}}\] is an odd function if n is odd. We know the property, \[\int_{-a}^{a}{f(x)dx}=0\] where \[f(x)\] is an odd function. So, the value of \[{{I}_{1}}\] is 0. We also know that \[f(x)={{x}^{n}}\] is an odd function if n is even. We know the property, \[\int_{-a}^{a}{f(x)dx}=2\int_{0}^{a}{f(x)dx}\] where \[f(x)\] is an even function. Using this property simplifies \[{{I}_{2}}\] . Transform \[{{I}_{2}}\] as \[{{I}_{2}}=3\int\limits_{0}^{\sqrt{2}}{\dfrac{{{x}^{6}}}{{{x}^{2}}+2}dx-24\int\limits_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+2\int\limits_{0}^{\sqrt{2}}{\dfrac{1}{{{x}^{2}}+{{\left( \sqrt{2} \right)}^{2}}}dx}}}\] . In this equation of \[{{I}_{2}}\] , we can write the term \[\left( \dfrac{{{x}^{6}}}{{{x}^{2}}+2} \right)\] as \[\left( {{x}^{4}}-2{{x}^{2}}+\dfrac{4{{x}^{2}}}{{{x}^{2}}+2} \right)\] . Use this, simplify and solve it further.
Complete step-by-step answer:
Let \[I=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}dx}\] where \[{{I}_{1}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}-10{{x}^{5}}-7{{x}^{3}}+x}{{{x}^{2}}+2}dx}\] and
\[{{I}_{2}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{3{{x}^{6}}-12{{x}^{2}}+1}{{{x}^{2}}+2}dx}\] .
\[I=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}dx}\] ………………………….(1)
\[{{I}_{1}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}-10{{x}^{5}}-7{{x}^{3}}+x}{{{x}^{2}}+2}dx}\] ……………………………..(2)
\[{{I}_{2}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{3{{x}^{6}}-12{{x}^{2}}+1}{{{x}^{2}}+2}dx}\] ……………………………(3)
We can now say that \[I\] is the summation of \[{{I}_{1}}\] and \[{{I}_{2}}\] .
\[I={{I}_{1}}+{{I}_{2}}\] ……………………..(4)
We also know that \[f(x)={{x}^{n}}\] is an odd function if n is odd.
In equation (2) we have \[{{x}^{7}},{{x}^{5}},{{x}^{3}},x\] and these all have odd numbers as their exponents. So, these all are odd functions.
We know the property, \[\int_{-a}^{a}{f(x)dx}=0\] where \[f(x)\] is an odd function.
Now, using the property we can say that, \[{{I}_{1}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}-10{{x}^{5}}-7{{x}^{3}}+x}{{{x}^{2}}+2}dx}\] is equal to zero. So,
\[{{I}_{1}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}-10{{x}^{5}}-7{{x}^{3}}+x}{{{x}^{2}}+2}dx}=0\] ………………………..(5)
Now, putting the value of \[{{I}_{1}}\] in equation (4), we get
\[\begin{align}
& I={{I}_{1}}+{{I}_{2}} \\
& \Rightarrow I=0+{{I}_{2}} \\
\end{align}\]
\[\Rightarrow I={{I}_{2}}\] ………………(6)
We also know that \[f(x)={{x}^{n}}\] is an odd function if n is even.
In equation (3) we have \[{{x}^{6}}\,\text{and }{{x}^{2}}\] , and these all have even numbers as their exponents. So, these all are even functions.
We know the property, \[\int_{-a}^{a}{f(x)dx}=2\int_{0}^{a}{f(x)dx}\] where \[f(x)\] is an even function.
Using this property for simplifying equation (3), we get
\[{{I}_{2}}=2\int\limits_{0}^{\sqrt{2}}{\dfrac{3{{x}^{6}}-12{{x}^{2}}+1}{{{x}^{2}}+2}dx}\]
\[{{I}_{2}}=2\int\limits_{0}^{\sqrt{2}}{\dfrac{3{{x}^{6}}}{{{x}^{2}}+2}dx-24\int\limits_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+2\int\limits_{0}^{\sqrt{2}}{\dfrac{1}{{{x}^{2}}+{{\left( \sqrt{2} \right)}^{2}}}dx}}}\] ……………………..(7)
We know the formula, \[\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)}\] .
Using this formula and transforming equation (7), we get
\[{{I}_{2}}=2{{\int\limits_{0}^{\sqrt{2}}{\dfrac{3{{x}^{6}}}{{{x}^{2}}+2}dx-24\int\limits_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+2.\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{2}} \right)}}}_{0}}^{\sqrt{2}}\]
We know that \[{{\tan }^{-1}}1=\dfrac{\pi }{4}\,\text{and ta}{{\text{n}}^{-1}}0=0\] .
\[{{I}_{2}}=2.3\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{6}}}{{{x}^{2}}+2}dx}-24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+}\sqrt{2}\left( {{\tan }^{-1}}1-{{\tan }^{-1}}0 \right)\]
\[{{I}_{2}}=6\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{6}}}{{{x}^{2}}+2}dx}-24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+}\sqrt{2}\left( \dfrac{\pi }{4}-0 \right)\] …………………………….(8)
Now, simplifying the term \[\left( \dfrac{{{x}^{6}}}{{{x}^{2}}+2} \right)\] in equation (8), we get
\[\begin{align}
& =\dfrac{{{x}^{6}}}{{{x}^{2}}+2} \\
& =\dfrac{{{x}^{6}}+2{{x}^{4}}-2{{x}^{4}}-4{{x}^{2}}+4{{x}^{2}}}{{{x}^{2}}+2} \\
& =\dfrac{{{x}^{4}}\left( {{x}^{2}}+2 \right)-2{{x}^{2}}\left( {{x}^{2}}+2 \right)+4{{x}^{2}}}{{{x}^{2}}+2} \\
& =\dfrac{{{x}^{4}}\left( {{x}^{2}}+2 \right)}{\left( {{x}^{2}}+2 \right)}-\dfrac{2{{x}^{2}}\left( {{x}^{2}}+2 \right)}{\left( {{x}^{2}}+2 \right)}+\dfrac{4{{x}^{2}}}{\left( {{x}^{2}}+2 \right)} \\
\end{align}\]
\[={{x}^{4}}-2{{x}^{2}}+\dfrac{4{{x}^{2}}}{\left( {{x}^{2}}+2 \right)}\] …………………….(9)
From equation (8) and equation (9), we get
\[\begin{align}
& {{I}_{2}}=6\int_{0}^{\sqrt{2}}{\left( {{x}^{4}}-2{{x}^{2}}+\dfrac{4{{x}^{2}}}{{{x}^{2}}+2} \right)}dx-24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+}\sqrt{2}.\dfrac{\pi }{4} \\
& {{I}_{2}}=6\int_{0}^{\sqrt{2}}{\left( {{x}^{4}}-2{{x}^{2}} \right)}dx+6\int_{0}^{\sqrt{2}}{\dfrac{4{{x}^{2}}}{{{x}^{2}}+2}d}x-24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+}\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=6\int_{0}^{\sqrt{2}}{\left( {{x}^{4}}-2{{x}^{2}} \right)}dx+24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}d}x-24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+}\dfrac{\pi }{2\sqrt{2}} \\
\end{align}\]
\[\begin{align}
& {{I}_{2}}=6{{\left[ \dfrac{{{x}^{5}}}{5}-\dfrac{2{{x}^{3}}}{3} \right]}_{0}}^{\sqrt{2}}+\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=6\left[ \dfrac{4\sqrt{2}}{5}-\dfrac{4\sqrt{2}}{3} \right]+\dfrac{\pi }{2\sqrt{2}} \\
\end{align}\]
\[\begin{align}
& {{I}_{2}}=6\times 4\sqrt{2}\left( \dfrac{1}{5}-\dfrac{1}{3} \right)+\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=24\sqrt{2}\left( \dfrac{3-5}{15} \right)+\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=24\sqrt{2}\left( \dfrac{-2}{15} \right)+\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=\dfrac{-48\sqrt{2}}{15}+\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=\dfrac{-16\sqrt{2}}{5}+\dfrac{\pi }{2\sqrt{2}} \\
\end{align}\]
From equation (6), we have \[{{I}_{2}}\] is equal to \[I\] .
So, \[I={{I}_{2}}=\dfrac{-16\sqrt{2}}{5}+\dfrac{\pi }{2\sqrt{2}}\] .
From equation (1), we have \[I=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}dx}\] .
Hence, \[I=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}dx}=\dfrac{-16\sqrt{2}}{5}+\dfrac{\pi }{2\sqrt{2}}\] .
Note: To solve this question, one may think to factorise and try to get the term \[({{x}^{2}}+2)\] as a factor in the numerator of \[\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}\] so that the term \[({{x}^{2}}+2)\] gets cancelled from the denominator. But this approach cannot work here. We cannot make the term \[({{x}^{2}}+2)\] as a factor in the numerator of \[\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}\]
Complete step-by-step answer:
Let \[I=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}dx}\] where \[{{I}_{1}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}-10{{x}^{5}}-7{{x}^{3}}+x}{{{x}^{2}}+2}dx}\] and
\[{{I}_{2}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{3{{x}^{6}}-12{{x}^{2}}+1}{{{x}^{2}}+2}dx}\] .
\[I=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}dx}\] ………………………….(1)
\[{{I}_{1}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}-10{{x}^{5}}-7{{x}^{3}}+x}{{{x}^{2}}+2}dx}\] ……………………………..(2)
\[{{I}_{2}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{3{{x}^{6}}-12{{x}^{2}}+1}{{{x}^{2}}+2}dx}\] ……………………………(3)
We can now say that \[I\] is the summation of \[{{I}_{1}}\] and \[{{I}_{2}}\] .
\[I={{I}_{1}}+{{I}_{2}}\] ……………………..(4)
We also know that \[f(x)={{x}^{n}}\] is an odd function if n is odd.
In equation (2) we have \[{{x}^{7}},{{x}^{5}},{{x}^{3}},x\] and these all have odd numbers as their exponents. So, these all are odd functions.
We know the property, \[\int_{-a}^{a}{f(x)dx}=0\] where \[f(x)\] is an odd function.
Now, using the property we can say that, \[{{I}_{1}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}-10{{x}^{5}}-7{{x}^{3}}+x}{{{x}^{2}}+2}dx}\] is equal to zero. So,
\[{{I}_{1}}=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}-10{{x}^{5}}-7{{x}^{3}}+x}{{{x}^{2}}+2}dx}=0\] ………………………..(5)
Now, putting the value of \[{{I}_{1}}\] in equation (4), we get
\[\begin{align}
& I={{I}_{1}}+{{I}_{2}} \\
& \Rightarrow I=0+{{I}_{2}} \\
\end{align}\]
\[\Rightarrow I={{I}_{2}}\] ………………(6)
We also know that \[f(x)={{x}^{n}}\] is an odd function if n is even.
In equation (3) we have \[{{x}^{6}}\,\text{and }{{x}^{2}}\] , and these all have even numbers as their exponents. So, these all are even functions.
We know the property, \[\int_{-a}^{a}{f(x)dx}=2\int_{0}^{a}{f(x)dx}\] where \[f(x)\] is an even function.
Using this property for simplifying equation (3), we get
\[{{I}_{2}}=2\int\limits_{0}^{\sqrt{2}}{\dfrac{3{{x}^{6}}-12{{x}^{2}}+1}{{{x}^{2}}+2}dx}\]
\[{{I}_{2}}=2\int\limits_{0}^{\sqrt{2}}{\dfrac{3{{x}^{6}}}{{{x}^{2}}+2}dx-24\int\limits_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+2\int\limits_{0}^{\sqrt{2}}{\dfrac{1}{{{x}^{2}}+{{\left( \sqrt{2} \right)}^{2}}}dx}}}\] ……………………..(7)
We know the formula, \[\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)}\] .
Using this formula and transforming equation (7), we get
\[{{I}_{2}}=2{{\int\limits_{0}^{\sqrt{2}}{\dfrac{3{{x}^{6}}}{{{x}^{2}}+2}dx-24\int\limits_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+2.\dfrac{1}{\sqrt{2}}{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{2}} \right)}}}_{0}}^{\sqrt{2}}\]
We know that \[{{\tan }^{-1}}1=\dfrac{\pi }{4}\,\text{and ta}{{\text{n}}^{-1}}0=0\] .
\[{{I}_{2}}=2.3\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{6}}}{{{x}^{2}}+2}dx}-24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+}\sqrt{2}\left( {{\tan }^{-1}}1-{{\tan }^{-1}}0 \right)\]
\[{{I}_{2}}=6\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{6}}}{{{x}^{2}}+2}dx}-24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+}\sqrt{2}\left( \dfrac{\pi }{4}-0 \right)\] …………………………….(8)
Now, simplifying the term \[\left( \dfrac{{{x}^{6}}}{{{x}^{2}}+2} \right)\] in equation (8), we get
\[\begin{align}
& =\dfrac{{{x}^{6}}}{{{x}^{2}}+2} \\
& =\dfrac{{{x}^{6}}+2{{x}^{4}}-2{{x}^{4}}-4{{x}^{2}}+4{{x}^{2}}}{{{x}^{2}}+2} \\
& =\dfrac{{{x}^{4}}\left( {{x}^{2}}+2 \right)-2{{x}^{2}}\left( {{x}^{2}}+2 \right)+4{{x}^{2}}}{{{x}^{2}}+2} \\
& =\dfrac{{{x}^{4}}\left( {{x}^{2}}+2 \right)}{\left( {{x}^{2}}+2 \right)}-\dfrac{2{{x}^{2}}\left( {{x}^{2}}+2 \right)}{\left( {{x}^{2}}+2 \right)}+\dfrac{4{{x}^{2}}}{\left( {{x}^{2}}+2 \right)} \\
\end{align}\]
\[={{x}^{4}}-2{{x}^{2}}+\dfrac{4{{x}^{2}}}{\left( {{x}^{2}}+2 \right)}\] …………………….(9)
From equation (8) and equation (9), we get
\[\begin{align}
& {{I}_{2}}=6\int_{0}^{\sqrt{2}}{\left( {{x}^{4}}-2{{x}^{2}}+\dfrac{4{{x}^{2}}}{{{x}^{2}}+2} \right)}dx-24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+}\sqrt{2}.\dfrac{\pi }{4} \\
& {{I}_{2}}=6\int_{0}^{\sqrt{2}}{\left( {{x}^{4}}-2{{x}^{2}} \right)}dx+6\int_{0}^{\sqrt{2}}{\dfrac{4{{x}^{2}}}{{{x}^{2}}+2}d}x-24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+}\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=6\int_{0}^{\sqrt{2}}{\left( {{x}^{4}}-2{{x}^{2}} \right)}dx+24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}d}x-24\int_{0}^{\sqrt{2}}{\dfrac{{{x}^{2}}}{{{x}^{2}}+2}dx+}\dfrac{\pi }{2\sqrt{2}} \\
\end{align}\]
\[\begin{align}
& {{I}_{2}}=6{{\left[ \dfrac{{{x}^{5}}}{5}-\dfrac{2{{x}^{3}}}{3} \right]}_{0}}^{\sqrt{2}}+\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=6\left[ \dfrac{4\sqrt{2}}{5}-\dfrac{4\sqrt{2}}{3} \right]+\dfrac{\pi }{2\sqrt{2}} \\
\end{align}\]
\[\begin{align}
& {{I}_{2}}=6\times 4\sqrt{2}\left( \dfrac{1}{5}-\dfrac{1}{3} \right)+\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=24\sqrt{2}\left( \dfrac{3-5}{15} \right)+\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=24\sqrt{2}\left( \dfrac{-2}{15} \right)+\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=\dfrac{-48\sqrt{2}}{15}+\dfrac{\pi }{2\sqrt{2}} \\
& {{I}_{2}}=\dfrac{-16\sqrt{2}}{5}+\dfrac{\pi }{2\sqrt{2}} \\
\end{align}\]
From equation (6), we have \[{{I}_{2}}\] is equal to \[I\] .
So, \[I={{I}_{2}}=\dfrac{-16\sqrt{2}}{5}+\dfrac{\pi }{2\sqrt{2}}\] .
From equation (1), we have \[I=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}dx}\] .
Hence, \[I=\int\limits_{-\sqrt{2}}^{\sqrt{2}}{\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}dx}=\dfrac{-16\sqrt{2}}{5}+\dfrac{\pi }{2\sqrt{2}}\] .
Note: To solve this question, one may think to factorise and try to get the term \[({{x}^{2}}+2)\] as a factor in the numerator of \[\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}\] so that the term \[({{x}^{2}}+2)\] gets cancelled from the denominator. But this approach cannot work here. We cannot make the term \[({{x}^{2}}+2)\] as a factor in the numerator of \[\dfrac{2{{x}^{7}}+3{{x}^{6}}-10{{x}^{5}}-7{{x}^{3}}-12{{x}^{2}}+x+1}{{{x}^{2}}+2}\]
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

