
How do you evaluate sine, cosine and tangent of $\dfrac{{10\pi }}{3}$ without using a calculator?
Answer
558.3k+ views
Hint: We will first write the angle in the form of $n\pi + \theta $ and then use the identities of sine, cosine and tangent as required to find the required values.
Complete step-by-step answer:
We have the angle $\dfrac{{10\pi }}{3}$ given to us and we need to find the sine, cosine and tangent of it without using a calculator.
We can write the given angle $\dfrac{{10\pi }}{3}$ as $\dfrac{{12\pi - 2\pi }}{3}$.
Now, we will use the fact that: $\dfrac{{a + b}}{c} = \dfrac{a}{c} + \dfrac{b}{c}$.
So, we will obtain: $\dfrac{{10\pi }}{3} = \dfrac{{12\pi - 2\pi }}{3} = \dfrac{{12\pi }}{3} - \dfrac{{2\pi }}{3}$
On simplifying it, we will then get:- $\dfrac{{10\pi }}{3} = 4\pi - \dfrac{{2\pi }}{3}$
Now, we will find the sine, cosine and tangent of this angle.
Let us first find the sine of this angle.
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = \sin \left( {4\pi - \dfrac{{2\pi }}{3}} \right)$
Now, we will use the fact that: $\sin \left( {4\pi - \theta } \right) = - \sin \left( \theta \right)$
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = - \sin \left( {\dfrac{{2\pi }}{3}} \right)$
Now, we can further modify it like following:-
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = - \sin \left( {\pi - \dfrac{\pi }{3}} \right)$
Now, we will use the fact that: $\sin \left( {\pi - \theta } \right) = \sin \left( \theta \right)$
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = - \sin \left( {\dfrac{\pi }{3}} \right)$
Since, we know that $\sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = - \dfrac{{\sqrt 3 }}{2}$
Let us now find the cosine of this angle.
$ \Rightarrow \cos \left( {\dfrac{{10\pi }}{3}} \right) = \cos \left( {4\pi - \dfrac{{2\pi }}{3}} \right)$
Now, we will use the fact that: $\cos \left( {4\pi - \theta } \right) = \cos \left( \theta \right)$
$ \Rightarrow \cos \left( {\dfrac{{10\pi }}{3}} \right) = \cos \left( {\dfrac{{2\pi }}{3}} \right)$
Now, we can further modify it like following:-
$ \Rightarrow \cos \left( {\dfrac{{10\pi }}{3}} \right) = \cos \left( {\pi - \dfrac{\pi }{3}} \right)$
Now, we will use the fact that: $\cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right)$
$ \Rightarrow \cos \left( {\dfrac{{10\pi }}{3}} \right) = - \cos \left( {\dfrac{\pi }{3}} \right)$
Since, we know that $\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}$
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = - \dfrac{1}{2}$
Let us now find the tangent of this angle.
$ \Rightarrow \tan \left( {\dfrac{{10\pi }}{3}} \right) = \tan \left( {4\pi - \dfrac{{2\pi }}{3}} \right)$
Now, we will use the fact that: $\tan \left( {4\pi - \theta } \right) = - \tan \left( \theta \right)$
$ \Rightarrow \tan \left( {\dfrac{{10\pi }}{3}} \right) = - \tan \left( {\dfrac{{2\pi }}{3}} \right)$
Now, we can further modify it like following:-
$ \Rightarrow \tan \left( {\dfrac{{10\pi }}{3}} \right) = - \tan \left( {\pi - \dfrac{\pi }{3}} \right)$
Now, we will use the fact that: $\tan \left( {\pi - \theta } \right) = - \tan \left( \theta \right)$
$ \Rightarrow \tan \left( {\dfrac{{10\pi }}{3}} \right) = \tan \left( {\dfrac{\pi }{3}} \right)$
Since, we know that $\tan \left( {\dfrac{\pi }{3}} \right) = \sqrt 3 $
$ \Rightarrow \tan \left( {\dfrac{{10\pi }}{3}} \right) = \sqrt 3 $
Thus, we have the required answer.
Note:
The students must note that sine, cosine and tangent of any angle is positive or negative depending upon ADD SUGAR TO COFFEE, here the letters are bold A means All, S means sine, T means tangent and C means coffee. It suggests that all trigonometric ratios are positive in the first quadrant, sine and cosecant are positive in the second quadrant, tangent and cotangent are positive in the third quadrant and finally cosine and secant are positive in the fourth quadrant.
The students must commit to memory the following formulas:-
$\sin \left( {4\pi - \theta } \right) = - \sin \left( \theta \right)$
$\sin \left( {\pi - \theta } \right) = \sin \left( \theta \right)$
$\cos \left( {4\pi - \theta } \right) = \cos \left( \theta \right)$
$\cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right)$
$\tan \left( {4\pi - \theta } \right) = - \tan \left( \theta \right)$
$\tan \left( {\pi - \theta } \right) = - \tan \left( \theta \right)$
Complete step-by-step answer:
We have the angle $\dfrac{{10\pi }}{3}$ given to us and we need to find the sine, cosine and tangent of it without using a calculator.
We can write the given angle $\dfrac{{10\pi }}{3}$ as $\dfrac{{12\pi - 2\pi }}{3}$.
Now, we will use the fact that: $\dfrac{{a + b}}{c} = \dfrac{a}{c} + \dfrac{b}{c}$.
So, we will obtain: $\dfrac{{10\pi }}{3} = \dfrac{{12\pi - 2\pi }}{3} = \dfrac{{12\pi }}{3} - \dfrac{{2\pi }}{3}$
On simplifying it, we will then get:- $\dfrac{{10\pi }}{3} = 4\pi - \dfrac{{2\pi }}{3}$
Now, we will find the sine, cosine and tangent of this angle.
Let us first find the sine of this angle.
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = \sin \left( {4\pi - \dfrac{{2\pi }}{3}} \right)$
Now, we will use the fact that: $\sin \left( {4\pi - \theta } \right) = - \sin \left( \theta \right)$
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = - \sin \left( {\dfrac{{2\pi }}{3}} \right)$
Now, we can further modify it like following:-
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = - \sin \left( {\pi - \dfrac{\pi }{3}} \right)$
Now, we will use the fact that: $\sin \left( {\pi - \theta } \right) = \sin \left( \theta \right)$
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = - \sin \left( {\dfrac{\pi }{3}} \right)$
Since, we know that $\sin \left( {\dfrac{\pi }{3}} \right) = \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = - \dfrac{{\sqrt 3 }}{2}$
Let us now find the cosine of this angle.
$ \Rightarrow \cos \left( {\dfrac{{10\pi }}{3}} \right) = \cos \left( {4\pi - \dfrac{{2\pi }}{3}} \right)$
Now, we will use the fact that: $\cos \left( {4\pi - \theta } \right) = \cos \left( \theta \right)$
$ \Rightarrow \cos \left( {\dfrac{{10\pi }}{3}} \right) = \cos \left( {\dfrac{{2\pi }}{3}} \right)$
Now, we can further modify it like following:-
$ \Rightarrow \cos \left( {\dfrac{{10\pi }}{3}} \right) = \cos \left( {\pi - \dfrac{\pi }{3}} \right)$
Now, we will use the fact that: $\cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right)$
$ \Rightarrow \cos \left( {\dfrac{{10\pi }}{3}} \right) = - \cos \left( {\dfrac{\pi }{3}} \right)$
Since, we know that $\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}$
$ \Rightarrow \sin \left( {\dfrac{{10\pi }}{3}} \right) = - \dfrac{1}{2}$
Let us now find the tangent of this angle.
$ \Rightarrow \tan \left( {\dfrac{{10\pi }}{3}} \right) = \tan \left( {4\pi - \dfrac{{2\pi }}{3}} \right)$
Now, we will use the fact that: $\tan \left( {4\pi - \theta } \right) = - \tan \left( \theta \right)$
$ \Rightarrow \tan \left( {\dfrac{{10\pi }}{3}} \right) = - \tan \left( {\dfrac{{2\pi }}{3}} \right)$
Now, we can further modify it like following:-
$ \Rightarrow \tan \left( {\dfrac{{10\pi }}{3}} \right) = - \tan \left( {\pi - \dfrac{\pi }{3}} \right)$
Now, we will use the fact that: $\tan \left( {\pi - \theta } \right) = - \tan \left( \theta \right)$
$ \Rightarrow \tan \left( {\dfrac{{10\pi }}{3}} \right) = \tan \left( {\dfrac{\pi }{3}} \right)$
Since, we know that $\tan \left( {\dfrac{\pi }{3}} \right) = \sqrt 3 $
$ \Rightarrow \tan \left( {\dfrac{{10\pi }}{3}} \right) = \sqrt 3 $
Thus, we have the required answer.
Note:
The students must note that sine, cosine and tangent of any angle is positive or negative depending upon ADD SUGAR TO COFFEE, here the letters are bold A means All, S means sine, T means tangent and C means coffee. It suggests that all trigonometric ratios are positive in the first quadrant, sine and cosecant are positive in the second quadrant, tangent and cotangent are positive in the third quadrant and finally cosine and secant are positive in the fourth quadrant.
The students must commit to memory the following formulas:-
$\sin \left( {4\pi - \theta } \right) = - \sin \left( \theta \right)$
$\sin \left( {\pi - \theta } \right) = \sin \left( \theta \right)$
$\cos \left( {4\pi - \theta } \right) = \cos \left( \theta \right)$
$\cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right)$
$\tan \left( {4\pi - \theta } \right) = - \tan \left( \theta \right)$
$\tan \left( {\pi - \theta } \right) = - \tan \left( \theta \right)$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

