
How do you evaluate ${\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right)$?
Answer
546k+ views
Hint: In this question we have to find the value of the given function which is a trigonometric function, we will make use of inverse trigonometric formulas, first as the given angle will not be range of sin which is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$, so write the angle $5\pi $as the difference of two angles as $6\pi - \pi $, and the angle becomes $\pi - \dfrac{\pi }{6}$, and now using the fact $\sin \left( {\pi - \theta } \right) = \sin \theta $simplify the expression, and then by using the fact ${\sin ^{ - 1}}\left( {\sin x} \right) = x$we will get the required result.
Complete step by step solution:
Given function is ${\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right)$,
First as the given angle $\dfrac{{5\pi }}{6}$ is not in the range of sin which is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$, we will write the angle as the difference of two angles, by writing we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \dfrac{{6\pi - \pi }}{6}} \right)$,
Now simplifying the expression we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{{6\pi }}{6} - \dfrac{\pi }{6}} \right)} \right)$,
Now again simplifying by eliminating the like terms, we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi }{6}} \right)} \right)$,
Now using the trigonometric equality fact that is $\sin \left( {\pi - \theta } \right) = \sin \theta $, we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }{6}} \right)$,
Now using the inverse trigonometric formula of sine i.e., ${\sin ^{ - 1}}\left( {\sin x} \right) = x$,
Here $x = \dfrac{\pi }{6}$, by substituting the value we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = \dfrac{\pi }{6}$,
So, the value of the given function is $\dfrac{\pi }{6}$.
$\therefore $The value of the given trigonometric function ${\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right)$ will be equal to $\dfrac{\pi }{6}$.
Note: The inverse trigonometric functions are used to find the unknown measure of an angle of a right triangle when two side lengths are known. Basic inverse trigonometric functions are ${\sin ^{ - 1}}x$, ${\cos ^{ - 1}}x$ and ${\tan ^{ - 1}}x$.Specifically, they are the inverses of the sine, cosine, tangent. Some important formulas related to Inverse trigonometry are given below:
${\sin ^{ - 1}}\left( {\sin x} \right) = x$,
${\cos ^{ - 1}}\left( {\cos x} \right) = x$,
${\tan ^{ - 1}}\left( {\tan x} \right) = x$,
${\sec ^{ - 1}}\left( {\sec x} \right) = x$,
${\csc ^{ - 1}}\left( {\csc x} \right) = x$,
${\cot ^{ - 1}}\left( {\cot x} \right) = x$,
${\sin ^{ - 1}}x = {\csc ^{ - 1}}\dfrac{1}{x}$,
${\cos ^{ - 1}}x = {\sec ^{ - 1}}\dfrac{1}{x}$,
${\tan ^{ - 1}}x = {\cot ^{ - 1}}\dfrac{1}{x}$,
${\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} = {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 - {x^2}} }}} \right)$,
${\cos ^{ - 1}}x = {\sin ^{ - 1}}\sqrt {1 - {x^2}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 - {x^2}} }}{x}} \right)$,
${\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }}} \right) = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)$.
Complete step by step solution:
Given function is ${\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right)$,
First as the given angle $\dfrac{{5\pi }}{6}$ is not in the range of sin which is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$, we will write the angle as the difference of two angles, by writing we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \dfrac{{6\pi - \pi }}{6}} \right)$,
Now simplifying the expression we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\dfrac{{6\pi }}{6} - \dfrac{\pi }{6}} \right)} \right)$,
Now again simplifying by eliminating the like terms, we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \left( {\pi - \dfrac{\pi }{6}} \right)} \right)$,
Now using the trigonometric equality fact that is $\sin \left( {\pi - \theta } \right) = \sin \theta $, we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }{6}} \right)$,
Now using the inverse trigonometric formula of sine i.e., ${\sin ^{ - 1}}\left( {\sin x} \right) = x$,
Here $x = \dfrac{\pi }{6}$, by substituting the value we get,
$ \Rightarrow {\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right) = \dfrac{\pi }{6}$,
So, the value of the given function is $\dfrac{\pi }{6}$.
$\therefore $The value of the given trigonometric function ${\sin ^{ - 1}}\left( {\sin \dfrac{{5\pi }}{6}} \right)$ will be equal to $\dfrac{\pi }{6}$.
Note: The inverse trigonometric functions are used to find the unknown measure of an angle of a right triangle when two side lengths are known. Basic inverse trigonometric functions are ${\sin ^{ - 1}}x$, ${\cos ^{ - 1}}x$ and ${\tan ^{ - 1}}x$.Specifically, they are the inverses of the sine, cosine, tangent. Some important formulas related to Inverse trigonometry are given below:
${\sin ^{ - 1}}\left( {\sin x} \right) = x$,
${\cos ^{ - 1}}\left( {\cos x} \right) = x$,
${\tan ^{ - 1}}\left( {\tan x} \right) = x$,
${\sec ^{ - 1}}\left( {\sec x} \right) = x$,
${\csc ^{ - 1}}\left( {\csc x} \right) = x$,
${\cot ^{ - 1}}\left( {\cot x} \right) = x$,
${\sin ^{ - 1}}x = {\csc ^{ - 1}}\dfrac{1}{x}$,
${\cos ^{ - 1}}x = {\sec ^{ - 1}}\dfrac{1}{x}$,
${\tan ^{ - 1}}x = {\cot ^{ - 1}}\dfrac{1}{x}$,
${\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} = {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 - {x^2}} }}} \right)$,
${\cos ^{ - 1}}x = {\sin ^{ - 1}}\sqrt {1 - {x^2}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 - {x^2}} }}{x}} \right)$,
${\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }}} \right) = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

