
Evaluate $ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} $ without calculating the cubes.
Answer
486.3k+ views
Hint: In the given problem, to find required value first we will rewrite the given expression. Note that $ - {\left( a \right)^3} $ can be written as $ {\left( { - a} \right)^3} $ because the power is odd. If $ a + b + c = 0 $ then $ {a^3} + {b^3} + {c^3} $ is equal to $ 3abc $ . We will use this result to find the required value.
Complete step-by-step answer:
In this problem, we have to evaluate $ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} \cdots \cdots \left( 1 \right) $ . We know that $ - {\left( a \right)^3} $ can be written as $ {\left( { - a} \right)^3} $ . Using this information let us rewrite the expression $ \left( 1 \right) $ . So, we can write $ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} + {\left( { - \dfrac{5}{6}} \right)^3} \cdots \cdots \left( 2 \right) $ .
Let us take $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . Now we are going to find $ a + b + c $ . So, we can write
$ a + b + c = \dfrac{1}{2} + \dfrac{1}{3} + \left( { - \dfrac{5}{6}} \right) $
$ \Rightarrow a + b + c = \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{5}{6} $
Let us simplify the RHS of the above equation by taking LCM. Note that LCM of numbers $ 2,3,6 $ is $ 6 $ . So, we can write
$ \Rightarrow a + b + c = \dfrac{3}{6} + \dfrac{2}{6} - \dfrac{5}{6} $
$ \Rightarrow a + b + c = \dfrac{{3 + 2 - 5}}{6} $
$ \Rightarrow a + b + c = 0 $
Now we have $ a + b + c = 0 $ where $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . We have to find the value of $ {a^3} + {b^3} + {c^3} $ where $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . If $ a + b + c = 0 $ then $ {a^3} + {b^3} + {c^3} $ is equal to $ 3abc $ . Now we are going to use this result. So, we can write
$ {a^3} + {b^3} + {c^3} = 3abc $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = 3\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{3}} \right)\left( { - \dfrac{5}{6}} \right) $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = - \dfrac{5}{{12}} $
Hence, the required value is $ - \dfrac{5}{{12}} $ .
Note: In the given problem, it is mentioned that we need to evaluate the value without calculating the cubes. If it is not mentioned then we can evaluate the value by taking cubes of individual terms. That is, we can write
$ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = \dfrac{1}{8} + \dfrac{1}{{27}} - \dfrac{{125}}{{216}} $
Simplify the above expression by taking LCM. Note that LCM of numbers $ 8,27,216 $ is $ 216 $ . So, we can write
$ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = \dfrac{{27}}{{216}} + \dfrac{8}{{216}} - \dfrac{{125}}{{216}} $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = - \dfrac{{90}}{{216}} = - \dfrac{5}{{12}} $
Also remember that if $ a = b = c $ then we can write $ {a^3} + {b^3} + {c^3} $ is equal to $ 3abc $ . Factorization of $ {a^3} + {b^3} + {c^3} - 3abc $ is given by $ \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $ .
Complete step-by-step answer:
In this problem, we have to evaluate $ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} \cdots \cdots \left( 1 \right) $ . We know that $ - {\left( a \right)^3} $ can be written as $ {\left( { - a} \right)^3} $ . Using this information let us rewrite the expression $ \left( 1 \right) $ . So, we can write $ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} + {\left( { - \dfrac{5}{6}} \right)^3} \cdots \cdots \left( 2 \right) $ .
Let us take $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . Now we are going to find $ a + b + c $ . So, we can write
$ a + b + c = \dfrac{1}{2} + \dfrac{1}{3} + \left( { - \dfrac{5}{6}} \right) $
$ \Rightarrow a + b + c = \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{5}{6} $
Let us simplify the RHS of the above equation by taking LCM. Note that LCM of numbers $ 2,3,6 $ is $ 6 $ . So, we can write
$ \Rightarrow a + b + c = \dfrac{3}{6} + \dfrac{2}{6} - \dfrac{5}{6} $
$ \Rightarrow a + b + c = \dfrac{{3 + 2 - 5}}{6} $
$ \Rightarrow a + b + c = 0 $
Now we have $ a + b + c = 0 $ where $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . We have to find the value of $ {a^3} + {b^3} + {c^3} $ where $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . If $ a + b + c = 0 $ then $ {a^3} + {b^3} + {c^3} $ is equal to $ 3abc $ . Now we are going to use this result. So, we can write
$ {a^3} + {b^3} + {c^3} = 3abc $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = 3\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{3}} \right)\left( { - \dfrac{5}{6}} \right) $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = - \dfrac{5}{{12}} $
Hence, the required value is $ - \dfrac{5}{{12}} $ .
Note: In the given problem, it is mentioned that we need to evaluate the value without calculating the cubes. If it is not mentioned then we can evaluate the value by taking cubes of individual terms. That is, we can write
$ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = \dfrac{1}{8} + \dfrac{1}{{27}} - \dfrac{{125}}{{216}} $
Simplify the above expression by taking LCM. Note that LCM of numbers $ 8,27,216 $ is $ 216 $ . So, we can write
$ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = \dfrac{{27}}{{216}} + \dfrac{8}{{216}} - \dfrac{{125}}{{216}} $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = - \dfrac{{90}}{{216}} = - \dfrac{5}{{12}} $
Also remember that if $ a = b = c $ then we can write $ {a^3} + {b^3} + {c^3} $ is equal to $ 3abc $ . Factorization of $ {a^3} + {b^3} + {c^3} - 3abc $ is given by $ \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

Trending doubts
When Sambhaji Maharaj died a 11 February 1689 b 11 class 8 social science CBSE

How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

Write the smallest number divisible by both 306 and class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE
