
Evaluate $ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} $ without calculating the cubes.
Answer
581.7k+ views
Hint: In the given problem, to find required value first we will rewrite the given expression. Note that $ - {\left( a \right)^3} $ can be written as $ {\left( { - a} \right)^3} $ because the power is odd. If $ a + b + c = 0 $ then $ {a^3} + {b^3} + {c^3} $ is equal to $ 3abc $ . We will use this result to find the required value.
Complete step-by-step answer:
In this problem, we have to evaluate $ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} \cdots \cdots \left( 1 \right) $ . We know that $ - {\left( a \right)^3} $ can be written as $ {\left( { - a} \right)^3} $ . Using this information let us rewrite the expression $ \left( 1 \right) $ . So, we can write $ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} + {\left( { - \dfrac{5}{6}} \right)^3} \cdots \cdots \left( 2 \right) $ .
Let us take $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . Now we are going to find $ a + b + c $ . So, we can write
$ a + b + c = \dfrac{1}{2} + \dfrac{1}{3} + \left( { - \dfrac{5}{6}} \right) $
$ \Rightarrow a + b + c = \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{5}{6} $
Let us simplify the RHS of the above equation by taking LCM. Note that LCM of numbers $ 2,3,6 $ is $ 6 $ . So, we can write
$ \Rightarrow a + b + c = \dfrac{3}{6} + \dfrac{2}{6} - \dfrac{5}{6} $
$ \Rightarrow a + b + c = \dfrac{{3 + 2 - 5}}{6} $
$ \Rightarrow a + b + c = 0 $
Now we have $ a + b + c = 0 $ where $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . We have to find the value of $ {a^3} + {b^3} + {c^3} $ where $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . If $ a + b + c = 0 $ then $ {a^3} + {b^3} + {c^3} $ is equal to $ 3abc $ . Now we are going to use this result. So, we can write
$ {a^3} + {b^3} + {c^3} = 3abc $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = 3\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{3}} \right)\left( { - \dfrac{5}{6}} \right) $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = - \dfrac{5}{{12}} $
Hence, the required value is $ - \dfrac{5}{{12}} $ .
Note: In the given problem, it is mentioned that we need to evaluate the value without calculating the cubes. If it is not mentioned then we can evaluate the value by taking cubes of individual terms. That is, we can write
$ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = \dfrac{1}{8} + \dfrac{1}{{27}} - \dfrac{{125}}{{216}} $
Simplify the above expression by taking LCM. Note that LCM of numbers $ 8,27,216 $ is $ 216 $ . So, we can write
$ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = \dfrac{{27}}{{216}} + \dfrac{8}{{216}} - \dfrac{{125}}{{216}} $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = - \dfrac{{90}}{{216}} = - \dfrac{5}{{12}} $
Also remember that if $ a = b = c $ then we can write $ {a^3} + {b^3} + {c^3} $ is equal to $ 3abc $ . Factorization of $ {a^3} + {b^3} + {c^3} - 3abc $ is given by $ \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $ .
Complete step-by-step answer:
In this problem, we have to evaluate $ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} \cdots \cdots \left( 1 \right) $ . We know that $ - {\left( a \right)^3} $ can be written as $ {\left( { - a} \right)^3} $ . Using this information let us rewrite the expression $ \left( 1 \right) $ . So, we can write $ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} + {\left( { - \dfrac{5}{6}} \right)^3} \cdots \cdots \left( 2 \right) $ .
Let us take $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . Now we are going to find $ a + b + c $ . So, we can write
$ a + b + c = \dfrac{1}{2} + \dfrac{1}{3} + \left( { - \dfrac{5}{6}} \right) $
$ \Rightarrow a + b + c = \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{5}{6} $
Let us simplify the RHS of the above equation by taking LCM. Note that LCM of numbers $ 2,3,6 $ is $ 6 $ . So, we can write
$ \Rightarrow a + b + c = \dfrac{3}{6} + \dfrac{2}{6} - \dfrac{5}{6} $
$ \Rightarrow a + b + c = \dfrac{{3 + 2 - 5}}{6} $
$ \Rightarrow a + b + c = 0 $
Now we have $ a + b + c = 0 $ where $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . We have to find the value of $ {a^3} + {b^3} + {c^3} $ where $ a = \dfrac{1}{2},b = \dfrac{1}{3} $ and $ c = - \dfrac{5}{6} $ . If $ a + b + c = 0 $ then $ {a^3} + {b^3} + {c^3} $ is equal to $ 3abc $ . Now we are going to use this result. So, we can write
$ {a^3} + {b^3} + {c^3} = 3abc $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = 3\left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{3}} \right)\left( { - \dfrac{5}{6}} \right) $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = - \dfrac{5}{{12}} $
Hence, the required value is $ - \dfrac{5}{{12}} $ .
Note: In the given problem, it is mentioned that we need to evaluate the value without calculating the cubes. If it is not mentioned then we can evaluate the value by taking cubes of individual terms. That is, we can write
$ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = \dfrac{1}{8} + \dfrac{1}{{27}} - \dfrac{{125}}{{216}} $
Simplify the above expression by taking LCM. Note that LCM of numbers $ 8,27,216 $ is $ 216 $ . So, we can write
$ {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = \dfrac{{27}}{{216}} + \dfrac{8}{{216}} - \dfrac{{125}}{{216}} $
$ \Rightarrow {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{3}} \right)^3} - {\left( {\dfrac{5}{6}} \right)^3} = - \dfrac{{90}}{{216}} = - \dfrac{5}{{12}} $
Also remember that if $ a = b = c $ then we can write $ {a^3} + {b^3} + {c^3} $ is equal to $ 3abc $ . Factorization of $ {a^3} + {b^3} + {c^3} - 3abc $ is given by $ \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


