
Evaluate $\int{{{\sin }^{7}}xdx}$.
Answer
449.1k+ views
Hint: Clearly, the evaluation is tough with such high degree so we will split 7 into 6 and 1 pair after that we will use the identity ${{\cos }^{2}}x+{{\sin }^{2}}x=1$. After getting to this point we will use ${{\left( a-b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$ formula and solve it properly. Finally we will take help of substitution $p=\cos x$ to solve it further.
Complete step by step solution:
We are given the term $\int{{{\sin }^{7}}xdx}$ and we need to find its simplest evaluation. So, for this we are going to split 7 into 1 and 6 in the trigonometric term, ${{\sin }^{7}}x={{\sin }^{6}}x\cdot {{\sin }^{1}}x$. This will result into a new trigonometric form $\int{{{\sin }^{7}}}xdx=\int{{{\sin }^{6}}x}\cdot {{\sin }^{1}}xdx=\int{{{\left( \sin x \right)}^{6}}\cdot \sin x}dx$…(i).
We can now convert the term ${{\left( \sin x \right)}^{6}}={{\left( \sin x \right)}^{2\times 3}}={{\left( {{\sin }^{2}}x \right)}^{3}}$ and substitute it in (i). Therefore, we get $\int{{{\sin }^{7}}xdx=\int{{{\left( {{\sin }^{2}}x \right)}^{3}}\cdot \sin x}dx}$…(ii).
As we know the identity ${{\cos }^{2}}x+{{\sin }^{2}}x=1$ we can take out the value of sin as ${{\sin }^{2}}x=1-{{\cos }^{2}}x$ and put it in place of ${{\sin }^{2}}x$. Thus, we get $\int{{{\sin }^{7}}xdx=\int{{{\left( 1-{{\cos }^{2}}x \right)}^{3}}\cdot \sin x}dx}$.
After this we will use algebra in which we will take the help of formula ${{\left( a-b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$. By considering $a=1,b=-{{\cos }^{2}}x$ we get
\[\begin{align}
& \int{{{\sin }^{7}}xdx=\int{{{\left( 1-{{\cos }^{2}}x \right)}^{3}}\cdot \sin x}dx} \\
& \Rightarrow \int{{{\sin }^{7}}xdx=\int{\left[ {{\left( 1 \right)}^{3}}+{{\left( -{{\cos }^{2}}x \right)}^{3}}+3{{\left( 1 \right)}^{2}}\left( -{{\cos }^{2}}x \right)+3\left( 1 \right){{\left( -{{\cos }^{2}}x \right)}^{2}} \right]\cdot \sin x}dx} \\
& \Rightarrow \int{{{\sin }^{7}}xdx=\int{\left[ \sin x+{{\left( -{{\cos }^{2}}x \right)}^{3}}\cdot \sin x+3\left( -{{\cos }^{2}}x \right)\cdot \sin x+3{{\left( -{{\cos }^{2}}x \right)}^{2}}\cdot \sin x \right]}dx} \\
& \Rightarrow \int{{{\sin }^{7}}xdx=\int{\left[ \sin x-{{\left( \cos x \right)}^{6}}\cdot \sin x-3{{\left( \cos x \right)}^{2}}\cdot \sin x+3{{\left( \cos x \right)}^{4}}\cdot \sin x \right]}dx} \\
& \Rightarrow \int{{{\sin }^{7}}xdx=\int{\sin x}}dx-\int{{{\left( \cos x \right)}^{6}}\cdot \sin x}dx-3\int{{{\left( \cos x \right)}^{2}}\cdot \sin x}dx+3\int{{{\left( \cos x \right)}^{4}}\cdot \sin x}dx\,\,\,...(iii) \\
\end{align}\]
Now, it is time to use the process of substitution here. In this process we basically put one term in place of the other. And here, we will put $p=\cos x$. After applying differentiation with respect to x, we get,
$\begin{align}
& p=\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( p \right)=\dfrac{d}{dx}\left( \cos x \right) \\
& \Rightarrow \dfrac{dp}{dx}=-\sin x\,\,\left[ \text{Since, }\dfrac{d\left( \cos x \right)}{dx}=-\sin x \right] \\
& \Rightarrow dp=-\sin xdx \\
\end{align}$
Substituting all above differentiation in (iii), we have
\[\int{{{\sin }^{7}}xdx=-\int{dp}}+\int{{{p}^{6}}}dp+3\int{{{p}^{2}}}dp-3\int{{{p}^{4}}}dp\]
By using the integration $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$ results into $\int{dp}=p,\int{{{p}^{6}}dp}=\dfrac{{{p}^{7}}}{7},\int{{{p}^{2}}dp}=\dfrac{{{p}^{3}}}{3},\int{{{p}^{4}}dp=\dfrac{{{p}^{5}}}{5}}$. Therefore,
\[\begin{align}
& \Rightarrow \int{{{\sin }^{7}}xdx}=p+\dfrac{{{p}^{7}}}{7}+3\times \dfrac{{{p}^{3}}}{3}-3\times \dfrac{{{p}^{5}}}{5} \\
& \Rightarrow \int{{{\sin }^{7}}xdx}=p+\dfrac{{{p}^{7}}}{7}+{{p}^{3}}-\dfrac{3{{p}^{5}}}{5} \\
\end{align}\]
Since, $p=\cos x$ thus, \[\int{{{\sin }^{7}}xdx=-\cos x}+\dfrac{{{\cos }^{7}}x}{7}+{{\cos }^{3}}x-\dfrac{3{{\cos }^{5}}x}{5}\].
Note: To solve such types of questions we will split the odd degree into even degrees. Here, after splitting the odd degree term we must get one even degree and the other as degree = 1. We have converted ${{\left( \sin x \right)}^{6}}={{\left( \sin x \right)}^{2\times 3}}={{\left( {{\sin }^{2}}x \right)}^{3}}$ and not ${{\left( \sin x \right)}^{6}}={{\left( \sin x \right)}^{2\times 3}}={{\left( {{\sin }^{3}}x \right)}^{2}}$ there is the identity ${{\cos }^{2}}x+{{\sin }^{2}}x=1$ which is off degree 2 and not 3. During the process of substitution we could have used $p=-\cos x$ instead of $p=\cos x$. In $p=-\cos x$ we get,
$\begin{align}
& p=-\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( p \right)=-\dfrac{d}{dx}\left( \cos x \right) \\
& \Rightarrow \dfrac{dp}{dx}=-\left( -\sin x \right)\,\,\left[ \text{Since, }\dfrac{d\left( \cos x \right)}{dx}=-\sin x \right] \\
& \Rightarrow dp=\sin xdx \\
\end{align}$
These after differentiation may give slightly different terms but lastly will lead to the same answer which is right. But if the focus gets deviated then we might get the wrong answer, so it is important to solve it with concentration.
Complete step by step solution:
We are given the term $\int{{{\sin }^{7}}xdx}$ and we need to find its simplest evaluation. So, for this we are going to split 7 into 1 and 6 in the trigonometric term, ${{\sin }^{7}}x={{\sin }^{6}}x\cdot {{\sin }^{1}}x$. This will result into a new trigonometric form $\int{{{\sin }^{7}}}xdx=\int{{{\sin }^{6}}x}\cdot {{\sin }^{1}}xdx=\int{{{\left( \sin x \right)}^{6}}\cdot \sin x}dx$…(i).
We can now convert the term ${{\left( \sin x \right)}^{6}}={{\left( \sin x \right)}^{2\times 3}}={{\left( {{\sin }^{2}}x \right)}^{3}}$ and substitute it in (i). Therefore, we get $\int{{{\sin }^{7}}xdx=\int{{{\left( {{\sin }^{2}}x \right)}^{3}}\cdot \sin x}dx}$…(ii).
As we know the identity ${{\cos }^{2}}x+{{\sin }^{2}}x=1$ we can take out the value of sin as ${{\sin }^{2}}x=1-{{\cos }^{2}}x$ and put it in place of ${{\sin }^{2}}x$. Thus, we get $\int{{{\sin }^{7}}xdx=\int{{{\left( 1-{{\cos }^{2}}x \right)}^{3}}\cdot \sin x}dx}$.
After this we will use algebra in which we will take the help of formula ${{\left( a-b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}$. By considering $a=1,b=-{{\cos }^{2}}x$ we get
\[\begin{align}
& \int{{{\sin }^{7}}xdx=\int{{{\left( 1-{{\cos }^{2}}x \right)}^{3}}\cdot \sin x}dx} \\
& \Rightarrow \int{{{\sin }^{7}}xdx=\int{\left[ {{\left( 1 \right)}^{3}}+{{\left( -{{\cos }^{2}}x \right)}^{3}}+3{{\left( 1 \right)}^{2}}\left( -{{\cos }^{2}}x \right)+3\left( 1 \right){{\left( -{{\cos }^{2}}x \right)}^{2}} \right]\cdot \sin x}dx} \\
& \Rightarrow \int{{{\sin }^{7}}xdx=\int{\left[ \sin x+{{\left( -{{\cos }^{2}}x \right)}^{3}}\cdot \sin x+3\left( -{{\cos }^{2}}x \right)\cdot \sin x+3{{\left( -{{\cos }^{2}}x \right)}^{2}}\cdot \sin x \right]}dx} \\
& \Rightarrow \int{{{\sin }^{7}}xdx=\int{\left[ \sin x-{{\left( \cos x \right)}^{6}}\cdot \sin x-3{{\left( \cos x \right)}^{2}}\cdot \sin x+3{{\left( \cos x \right)}^{4}}\cdot \sin x \right]}dx} \\
& \Rightarrow \int{{{\sin }^{7}}xdx=\int{\sin x}}dx-\int{{{\left( \cos x \right)}^{6}}\cdot \sin x}dx-3\int{{{\left( \cos x \right)}^{2}}\cdot \sin x}dx+3\int{{{\left( \cos x \right)}^{4}}\cdot \sin x}dx\,\,\,...(iii) \\
\end{align}\]
Now, it is time to use the process of substitution here. In this process we basically put one term in place of the other. And here, we will put $p=\cos x$. After applying differentiation with respect to x, we get,
$\begin{align}
& p=\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( p \right)=\dfrac{d}{dx}\left( \cos x \right) \\
& \Rightarrow \dfrac{dp}{dx}=-\sin x\,\,\left[ \text{Since, }\dfrac{d\left( \cos x \right)}{dx}=-\sin x \right] \\
& \Rightarrow dp=-\sin xdx \\
\end{align}$
Substituting all above differentiation in (iii), we have
\[\int{{{\sin }^{7}}xdx=-\int{dp}}+\int{{{p}^{6}}}dp+3\int{{{p}^{2}}}dp-3\int{{{p}^{4}}}dp\]
By using the integration $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$ results into $\int{dp}=p,\int{{{p}^{6}}dp}=\dfrac{{{p}^{7}}}{7},\int{{{p}^{2}}dp}=\dfrac{{{p}^{3}}}{3},\int{{{p}^{4}}dp=\dfrac{{{p}^{5}}}{5}}$. Therefore,
\[\begin{align}
& \Rightarrow \int{{{\sin }^{7}}xdx}=p+\dfrac{{{p}^{7}}}{7}+3\times \dfrac{{{p}^{3}}}{3}-3\times \dfrac{{{p}^{5}}}{5} \\
& \Rightarrow \int{{{\sin }^{7}}xdx}=p+\dfrac{{{p}^{7}}}{7}+{{p}^{3}}-\dfrac{3{{p}^{5}}}{5} \\
\end{align}\]
Since, $p=\cos x$ thus, \[\int{{{\sin }^{7}}xdx=-\cos x}+\dfrac{{{\cos }^{7}}x}{7}+{{\cos }^{3}}x-\dfrac{3{{\cos }^{5}}x}{5}\].
Note: To solve such types of questions we will split the odd degree into even degrees. Here, after splitting the odd degree term we must get one even degree and the other as degree = 1. We have converted ${{\left( \sin x \right)}^{6}}={{\left( \sin x \right)}^{2\times 3}}={{\left( {{\sin }^{2}}x \right)}^{3}}$ and not ${{\left( \sin x \right)}^{6}}={{\left( \sin x \right)}^{2\times 3}}={{\left( {{\sin }^{3}}x \right)}^{2}}$ there is the identity ${{\cos }^{2}}x+{{\sin }^{2}}x=1$ which is off degree 2 and not 3. During the process of substitution we could have used $p=-\cos x$ instead of $p=\cos x$. In $p=-\cos x$ we get,
$\begin{align}
& p=-\cos x \\
& \Rightarrow \dfrac{d}{dx}\left( p \right)=-\dfrac{d}{dx}\left( \cos x \right) \\
& \Rightarrow \dfrac{dp}{dx}=-\left( -\sin x \right)\,\,\left[ \text{Since, }\dfrac{d\left( \cos x \right)}{dx}=-\sin x \right] \\
& \Rightarrow dp=\sin xdx \\
\end{align}$
These after differentiation may give slightly different terms but lastly will lead to the same answer which is right. But if the focus gets deviated then we might get the wrong answer, so it is important to solve it with concentration.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write a short note on Franklands reaction class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
