
Evaluate \[\int\limits_0^x {\dfrac{{x\,\,\tan \,x}}{{\sec x\, + \,\tan \,x}}dx} \]
Answer
585.9k+ views
Hint:
\[\left( {tan{\text{ }}x} \right)\] can be written in terms of \[\left( {sin{\text{ }}x} \right)\]and \[\left( {cos{\text{ }}x} \right)\] . Also try to solve the question by breaking it into simple steps like one can rationalize the denominator and write the answer after performing certain mathematical calculations.
Complete step by step solution:
Given:
\[\int\limits_0^x {\dfrac{{x\,\,\tan \,x}}{{\sec x\, + \,\tan \,x}}dx} \]
Stepwise solution:
Let us rationalize the given equation first. So that our question becomes much easier
$\int\limits_0^x {\dfrac{{x\,\tan x\,(\sec \,x\, - \,\tan x)}}{{(\sec x\, - \,\tan \,x)\,(\sec \,x + \tan \,x)}}dx} $
$ \Rightarrow \,\,\,\,\int\limits_0^x {\dfrac{{x\,\tan x\sec x - \,x\,{{\tan }^2}x)}}{{{{\sec }^2}x - {{\tan }^{2x}}}}dx} $
\[ \Rightarrow \,\,\,\,\int\limits_0^x {\dfrac{{x\,\tan x.\sec \,x - x\,{{\tan }^2}x}}{1}dx} \] $\left[ {\because \,\,{{\sec }^2}x + {{\tan }^2}x = 1} \right]$
$ \Rightarrow \,\,\,\,\int\limits_0^x {\left( {x\tan x.\,\sec x - x({{\sec }^2}x - 1).dx} \right)} $ [Since, ${\tan ^2}x = {\sec ^2}x - 1$ ]
\[ \Rightarrow \,\,\int\limits_0^x {x\tan x.\sec x\,dx} \, - \,\int\limits_0^x {x{{\sec }^2}x\,dx} \, - \,\,\int\limits_0^x {x.dx} \]
Now, using the [I. L. A. T. E] rule we will get the final answer.
The [I. L. A. T. E] rule is \[u\,\int {v\,dx} \, - \,\int {\left( {\dfrac{{du}}{{dx}}\,.\,\int {v\,dx} \,dx} \right)} \]
Thus, on applying it we get,
\[x\,\int\limits_0^x {\tan x\,\sec x\,dx} - \,\int\limits_0^x {\left( {\dfrac{d}{{dx}}x\,\int\limits_0^x {\tan x.\sec x\,dx} } \right)} \, - \,\,\left[ {x\,\int\limits_0^x {{{\sec }^2}x\,dx - \,\int {\left( {\dfrac{d}{{dx}}x.\,\,\int\limits_0^x {{{\sec }^2}x\,dx} } \right)} } \,dx} \right]\, + \,\int\limits_0^x {x\,dx} \]
\[ = x\sec x\, - \,\ln |\sec x + \tan x|\, - \,\left[ {x\tan x - \ln |\sec x|} \right]\, + \,\dfrac{{{x^2}}}{2}\]
$ = x\sec x - x\tan x - \,\ln (\sec x + \tan x) + \ln \,|\sec x| + \dfrac{{{x^2}}}{2}$
$ = \,x(\sec x - \tan x)\, - \,\ln (\sec x(\sec x + \tan x)) + \dfrac{{{x^2}}}{2} + C$
Since, $\ln \,M + \ln \,N = \,\ln (M.V)$
Therefore, the answer is
$ \Rightarrow x(\sec x - \tan x) - \ln |\sec x(\sec x + \tan x)| + \,\dfrac{{{x^2}}}{2} + C$
Note: In this type of question student often gets confused regarding [I. L. A. T. E] rule and they make a mistake by not rationalizing the equation at initial stage. Do not repeat the mistake and do not forget to write the constant “C” after the answer as without it your answer will be incorrect. Also remember that ln (M+ N) is never equal to ln multiplied by ln N. This is the most occurring conception among students. So, use these logarithmic statements carefully.
\[\left( {tan{\text{ }}x} \right)\] can be written in terms of \[\left( {sin{\text{ }}x} \right)\]and \[\left( {cos{\text{ }}x} \right)\] . Also try to solve the question by breaking it into simple steps like one can rationalize the denominator and write the answer after performing certain mathematical calculations.
Complete step by step solution:
Given:
\[\int\limits_0^x {\dfrac{{x\,\,\tan \,x}}{{\sec x\, + \,\tan \,x}}dx} \]
Stepwise solution:
Let us rationalize the given equation first. So that our question becomes much easier
$\int\limits_0^x {\dfrac{{x\,\tan x\,(\sec \,x\, - \,\tan x)}}{{(\sec x\, - \,\tan \,x)\,(\sec \,x + \tan \,x)}}dx} $
$ \Rightarrow \,\,\,\,\int\limits_0^x {\dfrac{{x\,\tan x\sec x - \,x\,{{\tan }^2}x)}}{{{{\sec }^2}x - {{\tan }^{2x}}}}dx} $
\[ \Rightarrow \,\,\,\,\int\limits_0^x {\dfrac{{x\,\tan x.\sec \,x - x\,{{\tan }^2}x}}{1}dx} \] $\left[ {\because \,\,{{\sec }^2}x + {{\tan }^2}x = 1} \right]$
$ \Rightarrow \,\,\,\,\int\limits_0^x {\left( {x\tan x.\,\sec x - x({{\sec }^2}x - 1).dx} \right)} $ [Since, ${\tan ^2}x = {\sec ^2}x - 1$ ]
\[ \Rightarrow \,\,\int\limits_0^x {x\tan x.\sec x\,dx} \, - \,\int\limits_0^x {x{{\sec }^2}x\,dx} \, - \,\,\int\limits_0^x {x.dx} \]
Now, using the [I. L. A. T. E] rule we will get the final answer.
The [I. L. A. T. E] rule is \[u\,\int {v\,dx} \, - \,\int {\left( {\dfrac{{du}}{{dx}}\,.\,\int {v\,dx} \,dx} \right)} \]
Thus, on applying it we get,
\[x\,\int\limits_0^x {\tan x\,\sec x\,dx} - \,\int\limits_0^x {\left( {\dfrac{d}{{dx}}x\,\int\limits_0^x {\tan x.\sec x\,dx} } \right)} \, - \,\,\left[ {x\,\int\limits_0^x {{{\sec }^2}x\,dx - \,\int {\left( {\dfrac{d}{{dx}}x.\,\,\int\limits_0^x {{{\sec }^2}x\,dx} } \right)} } \,dx} \right]\, + \,\int\limits_0^x {x\,dx} \]
\[ = x\sec x\, - \,\ln |\sec x + \tan x|\, - \,\left[ {x\tan x - \ln |\sec x|} \right]\, + \,\dfrac{{{x^2}}}{2}\]
$ = x\sec x - x\tan x - \,\ln (\sec x + \tan x) + \ln \,|\sec x| + \dfrac{{{x^2}}}{2}$
$ = \,x(\sec x - \tan x)\, - \,\ln (\sec x(\sec x + \tan x)) + \dfrac{{{x^2}}}{2} + C$
Since, $\ln \,M + \ln \,N = \,\ln (M.V)$
Therefore, the answer is
$ \Rightarrow x(\sec x - \tan x) - \ln |\sec x(\sec x + \tan x)| + \,\dfrac{{{x^2}}}{2} + C$
Note: In this type of question student often gets confused regarding [I. L. A. T. E] rule and they make a mistake by not rationalizing the equation at initial stage. Do not repeat the mistake and do not forget to write the constant “C” after the answer as without it your answer will be incorrect. Also remember that ln (M+ N) is never equal to ln multiplied by ln N. This is the most occurring conception among students. So, use these logarithmic statements carefully.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

