
Evaluate $ \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx} $
Answer
531.9k+ views
Hint: In order to determine the answer of above definite integral use the method of Integration by substitution by substituting $ \sin x - \cos x $ with $ t $ . With the use of this assumption, rewrite the whole integral in terms of $ t $ along with the limits. Use the standard formula of integration $ \int {\dfrac{1}{{{a^2} - {{\left( {bx} \right)}^2}}} = \dfrac{1}{{2ab}}} \log \left| {\dfrac{{a + bx}}{{a - bx}}} \right| $ to evaluate the integral and then put the limits as [Upper limit – lower limit] to obtain the final answer.
Formula:
$ \int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $
Complete step-by-step answer:
We are Given integral $ \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx} $ -(1)
Here we are using Integration by substitution method to solve the above integral
Now, let’s assume $ \sin x - \cos x = t $ -(2)
Calculating the first derivative of the above assumed equation we get,
$ \left( {\cos x + \sin x} \right)dx = dt $
As per the assumption, we have
$ {\left( {\sin x - \cos x} \right)^2} = {t^2} $
With the help of identity $ {\left( {A - B} \right)^2} = {A^2} + {B^2} + 2AB $ and trigonometric identity $ 2\sin x\cos x = \sin 2x $ ,we can rewrite the expression as
$ \sin 2x = 1 - {t^2} $
Since we have assumed some $ x $ expression in terms of $ t $ , so the limits of integrations will also change accordingly. So
$ x = 0,t = - 1 $ as $ \sin \left( 0 \right) - \cos \left( { - 1} \right) = t \Rightarrow t = - 1 $
Similarly
$ x = \dfrac{\pi }{4},t = 0 $ as $ \sin \left( {\dfrac{\pi }{4}} \right) - \cos \left( {\dfrac{\pi }{4}} \right) = t \Rightarrow t = 0 $
Now with the help of assumptions and results obtained above and along with the proper limits we can rewrite our original integral expression as
$
\therefore I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx} \\
I = \int\limits_{ - 1}^0 {\dfrac{1}{{16 + 9\left( {1 - {t^2}} \right)}}dt} \\
$
Simplifying further ,
$ I = \int\limits_{ - 1}^0 {\dfrac{1}{{25 - 9{t^2}}}dt} $
Rewriting the above integral , we get
$ I = \int\limits_{ - 1}^0 {\dfrac{1}{{{{\left( 5 \right)}^2} - {{\left( {3t} \right)}^2}}}dt} $
Now using the rule of integration $ \int {\dfrac{1}{{{a^2} - {{\left( {bx} \right)}^2}}} = \dfrac{1}{{2ab}}} \log \left| {\dfrac{{a + bx}}{{a - bx}}} \right| $ , we obtain the integration as
$ I = \left[ {\dfrac{1}{{30}}\log \left| {\dfrac{{5 + 3t}}{{5 - 3t}}} \right|} \right]_{ - 1}^0 $
Assigning limits to the above integral
Limits are calculated as [Upper limit – lower limit]
$
I = \dfrac{1}{{30}}\left[ {\log \left| {\dfrac{{5 + 3\left( 0 \right)}}{{5 - 3\left( 0 \right)}}} \right| - \log \left| {\dfrac{{5 + 3\left( { - 1} \right)}}{{5 - 3\left( { - 1} \right)}}} \right|} \right] \\
= \dfrac{1}{{30}}\left[ {\log \left| {\dfrac{5}{5}} \right| - \log \left| {\dfrac{{5 - 3}}{{5 + 3}}} \right|} \right] \\
= \dfrac{1}{{30}}\left[ {\log \left| 1 \right| - \log \left| {\dfrac{2}{8}} \right|} \right] \\
$
As we know the value for $ \log \left( 1 \right) = 0 $
$
= \dfrac{1}{{30}}\left[ {0 - \log \left| {\dfrac{1}{4}} \right|} \right] \\
= - \dfrac{1}{{30}}\log \dfrac{1}{4} \;
$
$ \therefore I = - \dfrac{1}{{30}}\log \dfrac{1}{4} $
Therefore, the value of the given integral $ \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx} $ is equal to $ - \dfrac{1}{{30}}\log \dfrac{1}{4} $
So, the correct answer is “ $ - \dfrac{1}{{30}}\log \dfrac{1}{4} $ ”.
Note: 1.Different types of methods of Integration:
I.Integration by Substitution
II.Integration by parts
III.Integration of rational algebraic function by using partial fraction
2. Integration by Substitution: The method of evaluating the integral by reducing it to standard form by a proper substitution is called integration by substitution.
If $ \varphi (x) $ is a continuously differentiable function, then to evaluate integrals of the form.
\[\int {f(\varphi (x))\,{\varphi ^1}(x)dx} \], we substitute $ \varphi (x) $ =t and $ {\varphi ^1}(x)dx = dt $
This substitution reduces the above integral to \[\int {f(t)\,dt} \]. After evaluating this integral we substitute back the value of t.
Formula:
$ \int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $
Complete step-by-step answer:
We are Given integral $ \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx} $ -(1)
Here we are using Integration by substitution method to solve the above integral
Now, let’s assume $ \sin x - \cos x = t $ -(2)
Calculating the first derivative of the above assumed equation we get,
$ \left( {\cos x + \sin x} \right)dx = dt $
As per the assumption, we have
$ {\left( {\sin x - \cos x} \right)^2} = {t^2} $
With the help of identity $ {\left( {A - B} \right)^2} = {A^2} + {B^2} + 2AB $ and trigonometric identity $ 2\sin x\cos x = \sin 2x $ ,we can rewrite the expression as
$ \sin 2x = 1 - {t^2} $
Since we have assumed some $ x $ expression in terms of $ t $ , so the limits of integrations will also change accordingly. So
$ x = 0,t = - 1 $ as $ \sin \left( 0 \right) - \cos \left( { - 1} \right) = t \Rightarrow t = - 1 $
Similarly
$ x = \dfrac{\pi }{4},t = 0 $ as $ \sin \left( {\dfrac{\pi }{4}} \right) - \cos \left( {\dfrac{\pi }{4}} \right) = t \Rightarrow t = 0 $
Now with the help of assumptions and results obtained above and along with the proper limits we can rewrite our original integral expression as
$
\therefore I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx} \\
I = \int\limits_{ - 1}^0 {\dfrac{1}{{16 + 9\left( {1 - {t^2}} \right)}}dt} \\
$
Simplifying further ,
$ I = \int\limits_{ - 1}^0 {\dfrac{1}{{25 - 9{t^2}}}dt} $
Rewriting the above integral , we get
$ I = \int\limits_{ - 1}^0 {\dfrac{1}{{{{\left( 5 \right)}^2} - {{\left( {3t} \right)}^2}}}dt} $
Now using the rule of integration $ \int {\dfrac{1}{{{a^2} - {{\left( {bx} \right)}^2}}} = \dfrac{1}{{2ab}}} \log \left| {\dfrac{{a + bx}}{{a - bx}}} \right| $ , we obtain the integration as
$ I = \left[ {\dfrac{1}{{30}}\log \left| {\dfrac{{5 + 3t}}{{5 - 3t}}} \right|} \right]_{ - 1}^0 $
Assigning limits to the above integral
Limits are calculated as [Upper limit – lower limit]
$
I = \dfrac{1}{{30}}\left[ {\log \left| {\dfrac{{5 + 3\left( 0 \right)}}{{5 - 3\left( 0 \right)}}} \right| - \log \left| {\dfrac{{5 + 3\left( { - 1} \right)}}{{5 - 3\left( { - 1} \right)}}} \right|} \right] \\
= \dfrac{1}{{30}}\left[ {\log \left| {\dfrac{5}{5}} \right| - \log \left| {\dfrac{{5 - 3}}{{5 + 3}}} \right|} \right] \\
= \dfrac{1}{{30}}\left[ {\log \left| 1 \right| - \log \left| {\dfrac{2}{8}} \right|} \right] \\
$
As we know the value for $ \log \left( 1 \right) = 0 $
$
= \dfrac{1}{{30}}\left[ {0 - \log \left| {\dfrac{1}{4}} \right|} \right] \\
= - \dfrac{1}{{30}}\log \dfrac{1}{4} \;
$
$ \therefore I = - \dfrac{1}{{30}}\log \dfrac{1}{4} $
Therefore, the value of the given integral $ \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\sin x + \cos x}}{{16 + 9\sin 2x}}dx} $ is equal to $ - \dfrac{1}{{30}}\log \dfrac{1}{4} $
So, the correct answer is “ $ - \dfrac{1}{{30}}\log \dfrac{1}{4} $ ”.
Note: 1.Different types of methods of Integration:
I.Integration by Substitution
II.Integration by parts
III.Integration of rational algebraic function by using partial fraction
2. Integration by Substitution: The method of evaluating the integral by reducing it to standard form by a proper substitution is called integration by substitution.
If $ \varphi (x) $ is a continuously differentiable function, then to evaluate integrals of the form.
\[\int {f(\varphi (x))\,{\varphi ^1}(x)dx} \], we substitute $ \varphi (x) $ =t and $ {\varphi ^1}(x)dx = dt $
This substitution reduces the above integral to \[\int {f(t)\,dt} \]. After evaluating this integral we substitute back the value of t.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

