
Evaluate $\int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt {\tan x} + \sqrt {\cot x} } \right)dx} $.
Answer
551.4k+ views
Hint: As we are given two trigonometric functions inside the integral, we know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$ and now we can use the substitution method by taking $\sin x - \cos x = t$and by changing the limits accordingly and we now the formula $\int {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }} = {{\sin }^{ - 1}}x} $, using which we get the final answer.
Step by step solution :
We are asked to evaluate $\int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt {\tan x} + \sqrt {\cot x} } \right)dx} $
We are given two trigonometric functions inside the integral
We know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$
Using this in the given integral we get
$
\Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt {\dfrac{{\sin x}}{{\cos x}}} + \sqrt {\dfrac{{\cos x}}{{\sin x}}} } \right)dx} \\
\Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left( {\dfrac{{\sin x + \cos x}}{{\sqrt {\sin x\cos x} }}} \right)dx} \\
$
Let the above equation be (1)
Now let $\sin x - \cos x = t$
Differentiating this we get \[\left( {\cos x + \sin x} \right)dx = dt\]……..(2)
Squaring t we get
$
\Rightarrow {t^2} = {\left( {\sin x - \cos x} \right)^2} \\
\Rightarrow {t^2} = {\sin ^2}x + {\cos ^2}x - 2\sin x\cos x \\
\Rightarrow {t^2} = 1 - 2\sin x\cos x \\
\Rightarrow 2\sin x\cos x = 1 - {t^2} \\
\Rightarrow \sin x\cos x = \dfrac{{1 - {t^2}}}{2} \\
$
Let's use this and equation (2) in equation (1)
Now considering the limits
When x = 0 ,
$
\Rightarrow \sin 0 - \cos 0 = t \\
\Rightarrow - 1 = t \\
$
When $x = \dfrac{\pi }{2}$
$
\Rightarrow \sin \dfrac{\pi }{2} - \cos \dfrac{\pi }{2} = t \\
\Rightarrow 1 = t \\
$
Therefore the limit ranges from – 1 to 1
$
\Rightarrow \int\limits_{ - 1}^1 {\left( {\dfrac{{dt}}{{\sqrt {\dfrac{{1 - {t^2}}}{2}} }}} \right)} \\
\Rightarrow \int\limits_{ - 1}^1 {\left( {\dfrac{{\sqrt 2 dt}}{{\sqrt {1 - {t^2}} }}} \right)} \\
$
We know that $\int {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }} = {{\sin }^{ - 1}}x} $
Using this we get
$
\Rightarrow \sqrt 2 \left[ {{{\sin }^{ - 1}}t} \right]_{ - 1}^1 \\
\Rightarrow \sqrt 2 \left[ {{{\sin }^{ - 1}}\left( 1 \right) - {{\sin }^{ - 1}}\left( { - 1} \right)} \right] \\
\Rightarrow \sqrt 2 \left[ {\dfrac{\pi }{2} - \dfrac{{3\pi }}{2}} \right] = \sqrt 2 \left( {\dfrac{{ - 2\pi }}{2}} \right) \\
\Rightarrow - \sqrt 2 \pi \\
$
Note :
Steps to keep in mind while solving trigonometric problems are:
1) Always start from the more complex side.
2) Express everything into sine and cosine.
3) Combine terms into a single fraction.
4) Use Pythagorean identities to transform between ${\sin ^2}x{\text{ and }}{\cos ^2}x$.
5) Know when to apply a double angle formula.
6) Know when to apply an additional formula.
7) Good old expand/ factorize/ simplify/ cancelling.
8) Integration, in mathematics, technique of finding a function g(x) the derivative of which, Dg(x), is equal to a given function f(x). This is indicated by the integral sign $\int {} $ as in $\int {f(x)} $, usually called the indefinite integral of the function.
Step by step solution :
We are asked to evaluate $\int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt {\tan x} + \sqrt {\cot x} } \right)dx} $
We are given two trigonometric functions inside the integral
We know that $\tan x = \dfrac{{\sin x}}{{\cos x}}$ and $\cot x = \dfrac{{\cos x}}{{\sin x}}$
Using this in the given integral we get
$
\Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt {\dfrac{{\sin x}}{{\cos x}}} + \sqrt {\dfrac{{\cos x}}{{\sin x}}} } \right)dx} \\
\Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\left( {\dfrac{{\sin x + \cos x}}{{\sqrt {\sin x\cos x} }}} \right)dx} \\
$
Let the above equation be (1)
Now let $\sin x - \cos x = t$
Differentiating this we get \[\left( {\cos x + \sin x} \right)dx = dt\]……..(2)
Squaring t we get
$
\Rightarrow {t^2} = {\left( {\sin x - \cos x} \right)^2} \\
\Rightarrow {t^2} = {\sin ^2}x + {\cos ^2}x - 2\sin x\cos x \\
\Rightarrow {t^2} = 1 - 2\sin x\cos x \\
\Rightarrow 2\sin x\cos x = 1 - {t^2} \\
\Rightarrow \sin x\cos x = \dfrac{{1 - {t^2}}}{2} \\
$
Let's use this and equation (2) in equation (1)
Now considering the limits
When x = 0 ,
$
\Rightarrow \sin 0 - \cos 0 = t \\
\Rightarrow - 1 = t \\
$
When $x = \dfrac{\pi }{2}$
$
\Rightarrow \sin \dfrac{\pi }{2} - \cos \dfrac{\pi }{2} = t \\
\Rightarrow 1 = t \\
$
Therefore the limit ranges from – 1 to 1
$
\Rightarrow \int\limits_{ - 1}^1 {\left( {\dfrac{{dt}}{{\sqrt {\dfrac{{1 - {t^2}}}{2}} }}} \right)} \\
\Rightarrow \int\limits_{ - 1}^1 {\left( {\dfrac{{\sqrt 2 dt}}{{\sqrt {1 - {t^2}} }}} \right)} \\
$
We know that $\int {\dfrac{{dx}}{{\sqrt {1 - {x^2}} }} = {{\sin }^{ - 1}}x} $
Using this we get
$
\Rightarrow \sqrt 2 \left[ {{{\sin }^{ - 1}}t} \right]_{ - 1}^1 \\
\Rightarrow \sqrt 2 \left[ {{{\sin }^{ - 1}}\left( 1 \right) - {{\sin }^{ - 1}}\left( { - 1} \right)} \right] \\
\Rightarrow \sqrt 2 \left[ {\dfrac{\pi }{2} - \dfrac{{3\pi }}{2}} \right] = \sqrt 2 \left( {\dfrac{{ - 2\pi }}{2}} \right) \\
\Rightarrow - \sqrt 2 \pi \\
$
Note :
Steps to keep in mind while solving trigonometric problems are:
1) Always start from the more complex side.
2) Express everything into sine and cosine.
3) Combine terms into a single fraction.
4) Use Pythagorean identities to transform between ${\sin ^2}x{\text{ and }}{\cos ^2}x$.
5) Know when to apply a double angle formula.
6) Know when to apply an additional formula.
7) Good old expand/ factorize/ simplify/ cancelling.
8) Integration, in mathematics, technique of finding a function g(x) the derivative of which, Dg(x), is equal to a given function f(x). This is indicated by the integral sign $\int {} $ as in $\int {f(x)} $, usually called the indefinite integral of the function.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

