Answer
Verified
425.4k+ views
Hint: We use the property that tangent and cotangent functions are reciprocal of each other. Convert the integral in terms of inverse tangent function and break the numerator in such a way that we can apply the property of addition of two tangent inverse functions. Use integration by parts to find the value of the obtained integral.
* \[\because \cot \theta = \dfrac{1}{{\tan \theta }} \Rightarrow {\cot ^{ - 1}}\theta = {\tan ^{ - 1}}\dfrac{1}{\theta }\]
* \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
*In integration by parts we use the sequence of ILATE (Inverse trigonometric, Logarithms, algebraic, trigonometric, and exponential) for choosing the value of \[u,v\] and then substitute in the integration formula of by parts integration.
Complete step by step solution:
We have to evaluate the integral \[\int\limits_0^1 {{{\cot }^{ - 1}}(1 - x + {x^2})dx} \]
Convert the integral in terms of tangent inverse
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}\dfrac{1}{{(1 - x + {x^2})}}} dx\]................… (1)
Now we break the numerator in such a way so we can apply property of trigonometry
We can write \[1 = x + 1 - x\]
Substitute the value of \[1 = x + 1 - x\] in numerator of equation (1)
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}\dfrac{{x + 1 - x}}{{(1 - x + {x^2})}}} dx\]
Write the denominator in easy terms
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}\dfrac{{x + 1 - x}}{{1 - x(1 - x)}}} dx\]...............… (2)
If we take two angles, \[(x)\] and \[(1 - x)\] then we can write \[{\tan ^{ - 1}}(x) + {\tan ^{ - 1}}(1 - x) = {\tan ^{ - 1}}\left( {\dfrac{{x + (1 - x)}}{{1 - x(1 - x)}}} \right)\]
So, RHS of the equation (2) transforms into easier form using the identity \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {\left( {{{\tan }^{ - 1}}(x) + {{\tan }^{ - 1}}(1 - x)} \right)dx} \]
Separate the two inverse functions in RHS
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}(x)dx} + \int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} \].................… (3)
Since we know that \[\int\limits_0^a {f(x)} dx = \int\limits_0^a {f(a - x)} dx\]
So, \[\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}1 - (1 - x)dx} \]
Which on solving gives \[\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}\left( {1 - 1 + x} \right)dx} \]
i.e. \[\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}xdx} \]
Substitute the value of \[\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}xdx} \] in equation (3)
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}(x)dx} + \int\limits_0^1 {{{\tan }^{ - 1}}(x)dx} \]
Add like terms in RHS
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = 2\int\limits_0^1 {{{\tan }^{ - 1}}(x)dx} \]
Now we can write RHS as
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = 2\int\limits_0^1 {{{\tan }^{ - 1}}x \times 1dx} \]
Use by parts to integrate RHS
Looking at the integral \[2\int\limits_0^1 {{{\tan }^{ - 1}}x \times 1dx} \]
Using the ILATE sequence we can tell that the term comes first in the sequence is \[u\] and which comes later is \[v\] i.e. in this case we have the terms inverse trigonometric and algebraic , first comes the inverse trigonometric term then comes the algebraic term so \[u\] is \[{\tan ^{ - 1}}x\] and \[v\] is 1
\[u = {\tan ^{ - 1}}x,v = 1\]
Now we calculate the differentiation of the term \[u\]
\[u' = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow u' = \dfrac{{d({{\tan }^{ - 1}}x)}}{{dx}}\]
\[ \Rightarrow u' = \dfrac{1}{{1 + {x^2}}}\]
Now substitute the values in equation \[\int {uvdt = u\int {vdt - \int {u'\left( {\int {vdt} } \right)dt} } } \]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2{\tan ^{ - 1}}x\int\limits_0^1 {1dx} - 2\int\limits_0^1 {(\dfrac{1}{{1 + {x^2}}})\left( {\int {1dx} } \right)dx} \]
Now we know \[\int {1dx = x} \]
Therefore substitute the value of \[\int {1dx = x} \] in RHS
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2{\tan ^{ - 1}}x(x) - 2\int\limits_0^1 {(\dfrac{1}{{1 + {x^2}}})(x)dx} \]
Now we can solve and bring out constant terms from the integral sign.
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2x{\tan ^{ - 1}}x - \int\limits_0^1 {(\dfrac{{2x}}{{1 + {x^2}}})dx} \]
Since the numerator of the fraction in RHS is derivative of the denominator and we know \[\int {\dfrac{{dt}}{t} = \log t} \]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {x{{\tan }^{ - 1}}x} \right]_0^1 - \left[ {\log \left( {1 + {x^2}} \right)} \right]_0^1\]
Calculate the values by substituting the upper and lower limits
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {1{{\tan }^{ - 1}}1 - 0} \right] - \left[ {\log \left( {1 + 1} \right) - \log \left( {1 + 0} \right)} \right]\]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {{{\tan }^{ - 1}}1} \right] - \left[ {\log 2 - \log 1} \right]\]
Substitute \[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\] and use the value \[\log 1 = 0\]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2 \times \dfrac{\pi }{4} - \left[ {\log 2 - 0} \right]\]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = \dfrac{\pi }{2} - \log 2\]
So value of \[2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} \] is \[\dfrac{\pi }{2} - \log 2\].
\[\therefore \]Option D is correct.
Note: Alternative method:
We can solve the solution after the step \[2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {{{\tan }^{ - 1}}1} \right] - \left[ {\log 2 - \log 1} \right]\] in another way
For step in the end we can use rule of log i.e. \[\log m - \log n = \log \dfrac{m}{n}\]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {{{\tan }^{ - 1}}1} \right] - \left[ {\log \dfrac{2}{1}} \right]\]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = \dfrac{\pi }{2} - \log 2\]
So value of \[2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} \]is\[\dfrac{\pi }{2} - \log 2\].
\[\therefore \]Option D is correct.
* \[\because \cot \theta = \dfrac{1}{{\tan \theta }} \Rightarrow {\cot ^{ - 1}}\theta = {\tan ^{ - 1}}\dfrac{1}{\theta }\]
* \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
*In integration by parts we use the sequence of ILATE (Inverse trigonometric, Logarithms, algebraic, trigonometric, and exponential) for choosing the value of \[u,v\] and then substitute in the integration formula of by parts integration.
Complete step by step solution:
We have to evaluate the integral \[\int\limits_0^1 {{{\cot }^{ - 1}}(1 - x + {x^2})dx} \]
Convert the integral in terms of tangent inverse
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}\dfrac{1}{{(1 - x + {x^2})}}} dx\]................… (1)
Now we break the numerator in such a way so we can apply property of trigonometry
We can write \[1 = x + 1 - x\]
Substitute the value of \[1 = x + 1 - x\] in numerator of equation (1)
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}\dfrac{{x + 1 - x}}{{(1 - x + {x^2})}}} dx\]
Write the denominator in easy terms
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}\dfrac{{x + 1 - x}}{{1 - x(1 - x)}}} dx\]...............… (2)
If we take two angles, \[(x)\] and \[(1 - x)\] then we can write \[{\tan ^{ - 1}}(x) + {\tan ^{ - 1}}(1 - x) = {\tan ^{ - 1}}\left( {\dfrac{{x + (1 - x)}}{{1 - x(1 - x)}}} \right)\]
So, RHS of the equation (2) transforms into easier form using the identity \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)\]
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {\left( {{{\tan }^{ - 1}}(x) + {{\tan }^{ - 1}}(1 - x)} \right)dx} \]
Separate the two inverse functions in RHS
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}(x)dx} + \int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} \].................… (3)
Since we know that \[\int\limits_0^a {f(x)} dx = \int\limits_0^a {f(a - x)} dx\]
So, \[\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}1 - (1 - x)dx} \]
Which on solving gives \[\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}\left( {1 - 1 + x} \right)dx} \]
i.e. \[\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}xdx} \]
Substitute the value of \[\int\limits_0^1 {{{\tan }^{ - 1}}(1 - x)dx} = \int\limits_0^1 {{{\tan }^{ - 1}}xdx} \] in equation (3)
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = \int\limits_0^1 {{{\tan }^{ - 1}}(x)dx} + \int\limits_0^1 {{{\tan }^{ - 1}}(x)dx} \]
Add like terms in RHS
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = 2\int\limits_0^1 {{{\tan }^{ - 1}}(x)dx} \]
Now we can write RHS as
\[ \Rightarrow {\cot ^{ - 1}}(1 - x + {x^2})dx = 2\int\limits_0^1 {{{\tan }^{ - 1}}x \times 1dx} \]
Use by parts to integrate RHS
Looking at the integral \[2\int\limits_0^1 {{{\tan }^{ - 1}}x \times 1dx} \]
Using the ILATE sequence we can tell that the term comes first in the sequence is \[u\] and which comes later is \[v\] i.e. in this case we have the terms inverse trigonometric and algebraic , first comes the inverse trigonometric term then comes the algebraic term so \[u\] is \[{\tan ^{ - 1}}x\] and \[v\] is 1
\[u = {\tan ^{ - 1}}x,v = 1\]
Now we calculate the differentiation of the term \[u\]
\[u' = \dfrac{{du}}{{dx}}\]
\[ \Rightarrow u' = \dfrac{{d({{\tan }^{ - 1}}x)}}{{dx}}\]
\[ \Rightarrow u' = \dfrac{1}{{1 + {x^2}}}\]
Now substitute the values in equation \[\int {uvdt = u\int {vdt - \int {u'\left( {\int {vdt} } \right)dt} } } \]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2{\tan ^{ - 1}}x\int\limits_0^1 {1dx} - 2\int\limits_0^1 {(\dfrac{1}{{1 + {x^2}}})\left( {\int {1dx} } \right)dx} \]
Now we know \[\int {1dx = x} \]
Therefore substitute the value of \[\int {1dx = x} \] in RHS
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2{\tan ^{ - 1}}x(x) - 2\int\limits_0^1 {(\dfrac{1}{{1 + {x^2}}})(x)dx} \]
Now we can solve and bring out constant terms from the integral sign.
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2x{\tan ^{ - 1}}x - \int\limits_0^1 {(\dfrac{{2x}}{{1 + {x^2}}})dx} \]
Since the numerator of the fraction in RHS is derivative of the denominator and we know \[\int {\dfrac{{dt}}{t} = \log t} \]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {x{{\tan }^{ - 1}}x} \right]_0^1 - \left[ {\log \left( {1 + {x^2}} \right)} \right]_0^1\]
Calculate the values by substituting the upper and lower limits
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {1{{\tan }^{ - 1}}1 - 0} \right] - \left[ {\log \left( {1 + 1} \right) - \log \left( {1 + 0} \right)} \right]\]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {{{\tan }^{ - 1}}1} \right] - \left[ {\log 2 - \log 1} \right]\]
Substitute \[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\] and use the value \[\log 1 = 0\]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2 \times \dfrac{\pi }{4} - \left[ {\log 2 - 0} \right]\]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = \dfrac{\pi }{2} - \log 2\]
So value of \[2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} \] is \[\dfrac{\pi }{2} - \log 2\].
\[\therefore \]Option D is correct.
Note: Alternative method:
We can solve the solution after the step \[2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {{{\tan }^{ - 1}}1} \right] - \left[ {\log 2 - \log 1} \right]\] in another way
For step in the end we can use rule of log i.e. \[\log m - \log n = \log \dfrac{m}{n}\]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = 2\left[ {{{\tan }^{ - 1}}1} \right] - \left[ {\log \dfrac{2}{1}} \right]\]
\[ \Rightarrow 2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} = \dfrac{\pi }{2} - \log 2\]
So value of \[2\int\limits_0^1 {{{\tan }^{ - 1}}x.1dx} \]is\[\dfrac{\pi }{2} - \log 2\].
\[\therefore \]Option D is correct.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE