
How do you evaluate $ \int{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}$ from 0 to infinity ?
Answer
547.8k+ views
Hint: We can solve the given integral by first using the derivative of substitution method, where you can substitute x with tan(y) . Then you can use integration by parts to solve the integral and get the final answer.
Complete step by step solution:
According to the problem, we are asked to find the integral 0 to infinity of the equation $ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}$ that is
$ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}$--- ( 1 )
Therefore, by using the substitution, where we substitute x with tan(y), we get
$ x=\tan y$ $ \Rightarrow \arctan x=y$ ---- (2)
$ \therefore dx={{\sec }^{2}}y$---- (3)
Limits also change when we substitute $ x=\tan y$. For lower limit, if , $x=0$,we get $y=0$. For upper limit if $ x=\infty $, we get $ y=\dfrac{\pi }{2}$
Using the equation 2 and equation 3, if we substitute them in equation 1, we get:
$ \begin{align}
& \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{y.\tan y.{{\sec }^{2}}y}{{{\left( 1+{{\tan }^{2}}y \right)}^{2}}}}dy \\
& \\
\end{align}$
Here, we can now substitute $ 1+{{\tan }^{2}}x={{\sec }^{2}}$ in the above equation.
$ \begin{align}
& \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{y.\tan y.{{\sec }^{2}}y}{{{\sec }^{4}}y}}dy \\
& \\
\end{align}$
Now, we can substitute $ \tan x=\dfrac{\sin x}{\cos x}$ in the above equation.
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{y.\dfrac{\sin y}{\cos y}}{{{\sec }^{2}}y}}dy$
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{y.\sin y.\cos y}dy$
But since, $ \sin 2a=2\sin a\cos a$, we get:
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{y.\sin 2y}dy$
Now we apply the integration by parts to solve equation 4. Therefore, we get,
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{1}{2}\left\{ \left[ y.\left( \dfrac{-\cos 2y}{2} \right) \right]_{0}^{\dfrac{\pi }{2}}+\int\limits_{0}^{\dfrac{\pi }{2}}{1.\dfrac{\cos 2y}{2}}dy \right\}$
Since the integral of sinx is -cosx and the derivative of x is 1.
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{1}{4}\left\{ \left[ \dfrac{-\pi .1}{2} \right]+\left[ \dfrac{\sin 2t}{2} \right]_{0}^{\dfrac{\pi }{2}} \right\}$
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8}+\dfrac{1}{4}\left[ 0 \right]$
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8}$ ---- Final answer
So, we have found the derivative of the given equation $ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}$ as $ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8}$.
Therefore, the solution of the given equation $ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}$ is $ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8}$.
Note: In this problem we should be careful while using substitutions like x = tant. You should be careful to change the dx and also the upper and lower limits. Also, remember the formulas for integration by parts and smaller integrals.
Complete step by step solution:
According to the problem, we are asked to find the integral 0 to infinity of the equation $ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}$ that is
$ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}$--- ( 1 )
Therefore, by using the substitution, where we substitute x with tan(y), we get
$ x=\tan y$ $ \Rightarrow \arctan x=y$ ---- (2)
$ \therefore dx={{\sec }^{2}}y$---- (3)
Limits also change when we substitute $ x=\tan y$. For lower limit, if , $x=0$,we get $y=0$. For upper limit if $ x=\infty $, we get $ y=\dfrac{\pi }{2}$
Using the equation 2 and equation 3, if we substitute them in equation 1, we get:
$ \begin{align}
& \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{y.\tan y.{{\sec }^{2}}y}{{{\left( 1+{{\tan }^{2}}y \right)}^{2}}}}dy \\
& \\
\end{align}$
Here, we can now substitute $ 1+{{\tan }^{2}}x={{\sec }^{2}}$ in the above equation.
$ \begin{align}
& \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{y.\tan y.{{\sec }^{2}}y}{{{\sec }^{4}}y}}dy \\
& \\
\end{align}$
Now, we can substitute $ \tan x=\dfrac{\sin x}{\cos x}$ in the above equation.
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{y.\dfrac{\sin y}{\cos y}}{{{\sec }^{2}}y}}dy$
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\int\limits_{0}^{\dfrac{\pi }{2}}{y.\sin y.\cos y}dy$
But since, $ \sin 2a=2\sin a\cos a$, we get:
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{y.\sin 2y}dy$
Now we apply the integration by parts to solve equation 4. Therefore, we get,
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{1}{2}\left\{ \left[ y.\left( \dfrac{-\cos 2y}{2} \right) \right]_{0}^{\dfrac{\pi }{2}}+\int\limits_{0}^{\dfrac{\pi }{2}}{1.\dfrac{\cos 2y}{2}}dy \right\}$
Since the integral of sinx is -cosx and the derivative of x is 1.
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{1}{4}\left\{ \left[ \dfrac{-\pi .1}{2} \right]+\left[ \dfrac{\sin 2t}{2} \right]_{0}^{\dfrac{\pi }{2}} \right\}$
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8}+\dfrac{1}{4}\left[ 0 \right]$
$ \Rightarrow \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8}$ ---- Final answer
So, we have found the derivative of the given equation $ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}$ as $ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8}$.
Therefore, the solution of the given equation $ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}$ is $ \int\limits_{0}^{\infty }{\left( x\cdot \arctan x \right)\dfrac{dx}{{{\left( 1+{{x}^{2}} \right)}^{2}}}}=\dfrac{\pi }{8}$.
Note: In this problem we should be careful while using substitutions like x = tant. You should be careful to change the dx and also the upper and lower limits. Also, remember the formulas for integration by parts and smaller integrals.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

