
How do you evaluate $ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}$ ?
Answer
548.1k+ views
Hint: We should solve this problem by using substitutions. Here we can substitute sin x as y. Then you can use some formulas to solve the integral and finally get the answer to this integral.
Complete step by step solution:
According to the problem, we are asked to find the integral of the given equation, that is $ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}$. We take the equation as equation 1.
$ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}$--- ( 1 )
Therefore, by using the substitution, where we substitute sinx with y, we get
$ x=\sin x$ $ \Rightarrow {{\sin }^{-1}}x=y$ ---- (2)
$ \therefore dx=\cos ydy$---- (3)
Using the equation 2 and equation 3, if we substitute them in equation 1, we get:
$ \begin{align}
& \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\int{\dfrac{1}{9+{{y}^{2}}}dy} \\
& \\
\end{align}$
Here, we can now divide with 1/9 on both the numerator and the denominator in the above equation.
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{9}\int{\dfrac{1}{1+\dfrac{{{y}^{2}}}{9}}dy}$
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{9}\int{\dfrac{1}{1+{{\left( \dfrac{y}{3} \right)}^{2}}}dy}$ --- (3)
Now, we again use substitution to substitute $ \dfrac{y}{3}$ with z. Therefore, we get:
$ \Rightarrow \dfrac{y}{3}=z\Rightarrow dy=3dz$ ---- (4)
Now, after substituting the value in 4 in equation 3, we get:
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{9}\int{\dfrac{3}{1+{{z}^{2}}}dz}$
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{3}\int{\dfrac{1}{1+{{z}^{2}}}dz}$ ---- (5)
We know that $ \begin{align}
& \dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}=\dfrac{1}{1+{{x}^{2}}} \\
& \\
\end{align}$. Therefore, using this in equation 5, we get:
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{3}{{\tan }^{-1}}\left( z \right)+c=\dfrac{1}{3}{{\tan }^{-1}}\left( \dfrac{y}{3} \right)+c=\dfrac{1}{3}{{\tan }^{-1}}\left( \dfrac{\sin x}{3} \right)+c$
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{3}{{\tan }^{-1}}\left( \dfrac{\sin x}{3} \right)+c$ ---- Final answer
So, we have found the derivative of the given equation $ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}$ as $ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{3}{{\tan }^{-1}}\left( \dfrac{\sin x}{3} \right)+c$.
Therefore, the solution of the given equation $ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}$ is $ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{3}{{\tan }^{-1}}\left( \dfrac{\sin x}{3} \right)+c$.
Note: We should be careful while doing all the substitutions. If one substitution goes wrong, the total answer may go wrong. Also, if you want to verify your answer, you could differentiate the answer you got. If after differentiating you get back the question as your answer, then your answer is correct otherwise check where you went wrong.
Complete step by step solution:
According to the problem, we are asked to find the integral of the given equation, that is $ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}$. We take the equation as equation 1.
$ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}$--- ( 1 )
Therefore, by using the substitution, where we substitute sinx with y, we get
$ x=\sin x$ $ \Rightarrow {{\sin }^{-1}}x=y$ ---- (2)
$ \therefore dx=\cos ydy$---- (3)
Using the equation 2 and equation 3, if we substitute them in equation 1, we get:
$ \begin{align}
& \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\int{\dfrac{1}{9+{{y}^{2}}}dy} \\
& \\
\end{align}$
Here, we can now divide with 1/9 on both the numerator and the denominator in the above equation.
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{9}\int{\dfrac{1}{1+\dfrac{{{y}^{2}}}{9}}dy}$
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{9}\int{\dfrac{1}{1+{{\left( \dfrac{y}{3} \right)}^{2}}}dy}$ --- (3)
Now, we again use substitution to substitute $ \dfrac{y}{3}$ with z. Therefore, we get:
$ \Rightarrow \dfrac{y}{3}=z\Rightarrow dy=3dz$ ---- (4)
Now, after substituting the value in 4 in equation 3, we get:
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{9}\int{\dfrac{3}{1+{{z}^{2}}}dz}$
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{3}\int{\dfrac{1}{1+{{z}^{2}}}dz}$ ---- (5)
We know that $ \begin{align}
& \dfrac{d\left( {{\tan }^{-1}}x \right)}{dx}=\dfrac{1}{1+{{x}^{2}}} \\
& \\
\end{align}$. Therefore, using this in equation 5, we get:
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{3}{{\tan }^{-1}}\left( z \right)+c=\dfrac{1}{3}{{\tan }^{-1}}\left( \dfrac{y}{3} \right)+c=\dfrac{1}{3}{{\tan }^{-1}}\left( \dfrac{\sin x}{3} \right)+c$
$ \Rightarrow \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{3}{{\tan }^{-1}}\left( \dfrac{\sin x}{3} \right)+c$ ---- Final answer
So, we have found the derivative of the given equation $ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}$ as $ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{3}{{\tan }^{-1}}\left( \dfrac{\sin x}{3} \right)+c$.
Therefore, the solution of the given equation $ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}$ is $ \int{\dfrac{\cos x}{9+{{\sin }^{2}}x}dx}=\dfrac{1}{3}{{\tan }^{-1}}\left( \dfrac{\sin x}{3} \right)+c$.
Note: We should be careful while doing all the substitutions. If one substitution goes wrong, the total answer may go wrong. Also, if you want to verify your answer, you could differentiate the answer you got. If after differentiating you get back the question as your answer, then your answer is correct otherwise check where you went wrong.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

