
Evaluate $\int {{{\tan }^{ - 1}}} \sqrt x dx$.
Answer
540.9k+ views
Hint: we can start by using integration by parts. Remember, $u$and $v$are functions of $x$with $u'$and $v'$their respective derivatives with respect to $x$. Then:
$\int {uvdx = u\int {vdx - \int {(u'\int {vdx} } } } )dx$
Now, the important step is the selection of functions as $u$and $v$. For that, $ILATE$ rule can be used. $I$stands for inverse trigonometric functions, $L$for logarithmic functions, $A$ for algebraic functions, $T$ for trigonometric functions, and $E$for exponential functions.
Using this rule, we can fix $u$ and $v$. Then, using the above formula, we can integrate easily.
Complete Step by Step Solution:
Here, ${\tan ^{ - 1}}\sqrt x $ is an inverse trigonometric function. So, it can be taken as $u$. As we can see in the integration $\int {{{\tan }^{ - 1}}} \sqrt x dx$, there is no other function of $x$which can be considered as $v$.
$\int {{{\tan }^{ - 1}}} \sqrt x dx$ can be written as $\int {({{\tan }^{ - 1}}} \sqrt x \times 1)dx$.
$1$ can be considered as function of $x$. ($\because 1 = {x^0}$)
In $\int {{{\tan }^{ - 1}}} \sqrt x dx$, $u = {\tan ^{ - 1}}\sqrt x $and $v = 1$
Using by parts by formula,
$\int {uvdx = u\int {vdx - \int {(u'\int {vdx} } } } )dx$
Let $I = \int {{{\tan }^{ - 1}}} \sqrt x dx$
$\int {{{\tan }^{ - 1}}} \sqrt x dx = {\tan ^{ - 1}}\sqrt x \int {1dx} - \int {[\dfrac{d}{{dx}}} ({\tan ^{ - 1}}\sqrt x )\int {1dx]dx} .................................($equation $1$)
Integration of $1$is $x$.
Differentiation of ${\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}$
Replace $x$with $\sqrt x $;
Differentiation of ${\tan ^{ - 1}}\sqrt x = \dfrac{1}{{1 + x}} \times \dfrac{1}{{2\sqrt x }}$ = ($\dfrac{1}{{2\sqrt x }}$ ,due to internal differentiation of $\sqrt x $)
Equation $1$ will become,
$I = x{\tan ^{ - 1}}\sqrt x - \int {\dfrac{x}{{1 + x}}} \times \dfrac{1}{{2\sqrt x }}dx$
$I = x{\tan ^{ - 1}}\sqrt x - \dfrac{1}{2}\int {\dfrac{{\sqrt x }}{{1 + x}}} dx........................$(equation $2$)
Let ${I_2} = \int {\dfrac{{\sqrt x }}{{1 + x}}} dx$
Let $\sqrt x = y$$ \Rightarrow x = {y^2}$
$ \Rightarrow dx = 2ydy$
${I_2} = \int {\dfrac{y}{{1 + {y^2}}}} \times 2ydy$
${I_2} = 2\int {\dfrac{{{y^2}}}{{1 + {y^2}}}} dy$
Adding and subtracting $1$ in numerator and denominator,
${I_2} = 2\int {\dfrac{{{y^2} + 1 - 1}}{{1 + {y^2}}}} dy$
${I_2} = 2\int {(1 - \dfrac{1}{{1 + {y^2}}}} )dy$
Substituting the value of ${I_2}$in equation $2$,
$I = x{\tan ^{ - 1}}\sqrt x - \dfrac{1}{2}{I_2}$
$I = x{\tan ^{ - 1}}\sqrt x - \dfrac{1}{2} \times 2\int {(1 - \dfrac{1}{{1 + {y^2}}}} )dy$
$I = x{\tan ^{ - 1}}\sqrt x - \int {(1 - \dfrac{1}{{1 + {y^2}}}} )dy$
$I = x{\tan ^{ - 1}}\sqrt x - y + {\tan ^{ - 1}}y - C$ ($\because \int {\dfrac{1}{{1 + {y^2}}}} dy = {\tan ^{ - 1}}y$)
Where $C$is the constant of Integration, We can replace $ - C$with $ + c$.
Substituting the value of $y$,
$I = x{\tan ^{ - 1}}\sqrt x - \sqrt x + {\tan ^{ - 1}}\sqrt x + C$
$I = (x + 1){\tan ^{ - 1}}\sqrt x - \sqrt x + C$
So, the integration of $\int {{{\tan }^{ - 1}}} \sqrt x dx$ is $(x + 1){\tan ^{ - 1}}\sqrt x - \sqrt x + C$.
Note:
Always remember the important formulas of differentiation and integration. If not, then it will make any question more difficult.
Some of the important formula we have used in this question are:
$1)$$\int {\dfrac{1}{{1 + {y^2}}}} dy = {\tan ^{ - 1}}y$
$2)$ Differentiation of ${\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}$
$3)$$\int {uvdx = u\int {vdx - \int {(u'\int {vdx} } } } )dx$
$\int {uvdx = u\int {vdx - \int {(u'\int {vdx} } } } )dx$
Now, the important step is the selection of functions as $u$and $v$. For that, $ILATE$ rule can be used. $I$stands for inverse trigonometric functions, $L$for logarithmic functions, $A$ for algebraic functions, $T$ for trigonometric functions, and $E$for exponential functions.
Using this rule, we can fix $u$ and $v$. Then, using the above formula, we can integrate easily.
Complete Step by Step Solution:
Here, ${\tan ^{ - 1}}\sqrt x $ is an inverse trigonometric function. So, it can be taken as $u$. As we can see in the integration $\int {{{\tan }^{ - 1}}} \sqrt x dx$, there is no other function of $x$which can be considered as $v$.
$\int {{{\tan }^{ - 1}}} \sqrt x dx$ can be written as $\int {({{\tan }^{ - 1}}} \sqrt x \times 1)dx$.
$1$ can be considered as function of $x$. ($\because 1 = {x^0}$)
In $\int {{{\tan }^{ - 1}}} \sqrt x dx$, $u = {\tan ^{ - 1}}\sqrt x $and $v = 1$
Using by parts by formula,
$\int {uvdx = u\int {vdx - \int {(u'\int {vdx} } } } )dx$
Let $I = \int {{{\tan }^{ - 1}}} \sqrt x dx$
$\int {{{\tan }^{ - 1}}} \sqrt x dx = {\tan ^{ - 1}}\sqrt x \int {1dx} - \int {[\dfrac{d}{{dx}}} ({\tan ^{ - 1}}\sqrt x )\int {1dx]dx} .................................($equation $1$)
Integration of $1$is $x$.
Differentiation of ${\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}$
Replace $x$with $\sqrt x $;
Differentiation of ${\tan ^{ - 1}}\sqrt x = \dfrac{1}{{1 + x}} \times \dfrac{1}{{2\sqrt x }}$ = ($\dfrac{1}{{2\sqrt x }}$ ,due to internal differentiation of $\sqrt x $)
Equation $1$ will become,
$I = x{\tan ^{ - 1}}\sqrt x - \int {\dfrac{x}{{1 + x}}} \times \dfrac{1}{{2\sqrt x }}dx$
$I = x{\tan ^{ - 1}}\sqrt x - \dfrac{1}{2}\int {\dfrac{{\sqrt x }}{{1 + x}}} dx........................$(equation $2$)
Let ${I_2} = \int {\dfrac{{\sqrt x }}{{1 + x}}} dx$
Let $\sqrt x = y$$ \Rightarrow x = {y^2}$
$ \Rightarrow dx = 2ydy$
${I_2} = \int {\dfrac{y}{{1 + {y^2}}}} \times 2ydy$
${I_2} = 2\int {\dfrac{{{y^2}}}{{1 + {y^2}}}} dy$
Adding and subtracting $1$ in numerator and denominator,
${I_2} = 2\int {\dfrac{{{y^2} + 1 - 1}}{{1 + {y^2}}}} dy$
${I_2} = 2\int {(1 - \dfrac{1}{{1 + {y^2}}}} )dy$
Substituting the value of ${I_2}$in equation $2$,
$I = x{\tan ^{ - 1}}\sqrt x - \dfrac{1}{2}{I_2}$
$I = x{\tan ^{ - 1}}\sqrt x - \dfrac{1}{2} \times 2\int {(1 - \dfrac{1}{{1 + {y^2}}}} )dy$
$I = x{\tan ^{ - 1}}\sqrt x - \int {(1 - \dfrac{1}{{1 + {y^2}}}} )dy$
$I = x{\tan ^{ - 1}}\sqrt x - y + {\tan ^{ - 1}}y - C$ ($\because \int {\dfrac{1}{{1 + {y^2}}}} dy = {\tan ^{ - 1}}y$)
Where $C$is the constant of Integration, We can replace $ - C$with $ + c$.
Substituting the value of $y$,
$I = x{\tan ^{ - 1}}\sqrt x - \sqrt x + {\tan ^{ - 1}}\sqrt x + C$
$I = (x + 1){\tan ^{ - 1}}\sqrt x - \sqrt x + C$
So, the integration of $\int {{{\tan }^{ - 1}}} \sqrt x dx$ is $(x + 1){\tan ^{ - 1}}\sqrt x - \sqrt x + C$.
Note:
Always remember the important formulas of differentiation and integration. If not, then it will make any question more difficult.
Some of the important formula we have used in this question are:
$1)$$\int {\dfrac{1}{{1 + {y^2}}}} dy = {\tan ^{ - 1}}y$
$2)$ Differentiation of ${\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}$
$3)$$\int {uvdx = u\int {vdx - \int {(u'\int {vdx} } } } )dx$
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

What is virtual and erect image ?

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

