
$Evaluate:{\text{ }}\int {{{\sin }^4}x{{\cos }^4}x} dx$
Answer
435.9k+ views
Hint: In this integration question, the trigonometry identities must be known to solve this problem. The key observation here to use the formula ${\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}$ and also ${\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}$ . By using these two identities the integrand can be simplified and the integration can be done easily.
Complete step-by-step answer:
$Let{\text{ I = }}\int {{{\sin }^4}x{{\cos }^4}x} dx$
Multiplying and dividing by 16,
${\text{I = }}\int {\left( {\dfrac{{16}}{{16}}} \right){{\sin }^4}x{{\cos }^4}x} dx$
$ \Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {16{{\sin }^4}x{{\cos }^4}x} dx$
$\because \sin 2x = 2\sin x\cos x$
$ \Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {{{\left( {\sin 2x} \right)}^4}} dx$
$\because {\sin ^2}x = 1 - {\cos ^2}x$
$ \Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {{{\left( {1 - {{\cos }^2}2x} \right)}^2}} dx$
On expanding,
$ \Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {\left( {1 + {{\cos }^4}2x - 2{{\cos }^2}2x} \right)} dx$
$\because {\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}$
Or, \[{\cos ^4}x = {\left( {\dfrac{{1 + \cos 2x}}{2}} \right)^2}\]
$\therefore {\text{I = }}\dfrac{1}{{16}}\int {\left( {1 + {{\left( {\dfrac{{1 + \cos 4x}}{2}} \right)}^2} - 2\left( {\dfrac{{1 + \cos 4x}}{2}} \right)} \right)} dx$
On expanding and simplifying further,
\[\therefore {\text{I = }}\dfrac{1}{{16}}\int {\left( {1 + \left( {\dfrac{{1 + {{\cos }^2}4x + 2\cos 4x}}{4}} \right) - 1 - \cos 4x} \right)} dx\]
On taking LCM,
$\therefore {\text{I = }}\dfrac{1}{{16}}\int {\dfrac{{\left( {4 + 1 + {{\cos }^2}2x + 2\cos 2x - 4 - 4\cos 2x} \right)}}{4}} dx$
On simplifying further,
$\therefore {\text{I = }}\dfrac{1}{{16}}\int {\dfrac{{\left( {1 + {{\cos }^2}4x - 2\cos 4x} \right)}}{4}} dx$
Or,
$\therefore {\text{I = }}\dfrac{1}{{64}}\int {\left( {1 + {{\cos }^2}4x - 2\cos 4x} \right)} dx$
Again using ${\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}$
${\text{I = }}\dfrac{1}{{64}}\int {\left( {1 + \dfrac{{1 + \cos 8x}}{2} - 2\cos 4x} \right)} dx$
On taking LCM,
$\therefore {\text{I = }}\dfrac{1}{{64}}\int {\dfrac{{\left( {2 + 1 + \cos 8x - 4\cos 4x} \right)}}{2}} dx$
On simplifying further,
${\text{I = }}\dfrac{1}{{128}}\int {\left( {3 + \cos 8x - 4\cos 4x} \right)} dx$
On separating the terms,
${\text{I = }}\dfrac{1}{{128}}\left( {\int {3dx + \int {\cos 8xdx - 4\int {\cos 4x} } } } \right)$
$ \Rightarrow {\text{I = }}\dfrac{1}{{128}}\left( {3x + {c_1} + \left( { - \dfrac{{\sin 8x}}{8} + {c_2}} \right) - 4\left( { - \dfrac{{\sin 4x}}{4} + {c_3}} \right)} \right)$
Where ${c_1},{\text{ }}{c_2}{\text{ }}and{\text{ }}{c_3}$ are the constants of integration.
After simplifying and rearranging the terms,
$ \Rightarrow {\text{I = }}\dfrac{1}{{128}}\left( {3x + \left( { - \dfrac{{\sin 8x}}{8}} \right) + \left( {\sin 4x} \right) + C} \right)$
Where $C = {c_1}{\text{ + }}{c_2} - 4{c_3}$
Note: The value of the constant can be found if the initial condition is given i.e. when x=0, the result of the integration would be some constant value, and by equating the value of the constant of integration can be found. This is indefinite-integral hence the constant of integration must be there but if it is definite-integral then the final answer would be some constant value. Also the results of the standard indefinite integral must be known so that it can be used directly.
Complete step-by-step answer:
$Let{\text{ I = }}\int {{{\sin }^4}x{{\cos }^4}x} dx$
Multiplying and dividing by 16,
${\text{I = }}\int {\left( {\dfrac{{16}}{{16}}} \right){{\sin }^4}x{{\cos }^4}x} dx$
$ \Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {16{{\sin }^4}x{{\cos }^4}x} dx$
$\because \sin 2x = 2\sin x\cos x$
$ \Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {{{\left( {\sin 2x} \right)}^4}} dx$
$\because {\sin ^2}x = 1 - {\cos ^2}x$
$ \Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {{{\left( {1 - {{\cos }^2}2x} \right)}^2}} dx$
On expanding,
$ \Rightarrow {\text{I = }}\dfrac{1}{{16}}\int {\left( {1 + {{\cos }^4}2x - 2{{\cos }^2}2x} \right)} dx$
$\because {\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}$
Or, \[{\cos ^4}x = {\left( {\dfrac{{1 + \cos 2x}}{2}} \right)^2}\]
$\therefore {\text{I = }}\dfrac{1}{{16}}\int {\left( {1 + {{\left( {\dfrac{{1 + \cos 4x}}{2}} \right)}^2} - 2\left( {\dfrac{{1 + \cos 4x}}{2}} \right)} \right)} dx$
On expanding and simplifying further,
\[\therefore {\text{I = }}\dfrac{1}{{16}}\int {\left( {1 + \left( {\dfrac{{1 + {{\cos }^2}4x + 2\cos 4x}}{4}} \right) - 1 - \cos 4x} \right)} dx\]
On taking LCM,
$\therefore {\text{I = }}\dfrac{1}{{16}}\int {\dfrac{{\left( {4 + 1 + {{\cos }^2}2x + 2\cos 2x - 4 - 4\cos 2x} \right)}}{4}} dx$
On simplifying further,
$\therefore {\text{I = }}\dfrac{1}{{16}}\int {\dfrac{{\left( {1 + {{\cos }^2}4x - 2\cos 4x} \right)}}{4}} dx$
Or,
$\therefore {\text{I = }}\dfrac{1}{{64}}\int {\left( {1 + {{\cos }^2}4x - 2\cos 4x} \right)} dx$
Again using ${\cos ^2}x = \dfrac{{1 + \cos 2x}}{2}$
${\text{I = }}\dfrac{1}{{64}}\int {\left( {1 + \dfrac{{1 + \cos 8x}}{2} - 2\cos 4x} \right)} dx$
On taking LCM,
$\therefore {\text{I = }}\dfrac{1}{{64}}\int {\dfrac{{\left( {2 + 1 + \cos 8x - 4\cos 4x} \right)}}{2}} dx$
On simplifying further,
${\text{I = }}\dfrac{1}{{128}}\int {\left( {3 + \cos 8x - 4\cos 4x} \right)} dx$
On separating the terms,
${\text{I = }}\dfrac{1}{{128}}\left( {\int {3dx + \int {\cos 8xdx - 4\int {\cos 4x} } } } \right)$
$ \Rightarrow {\text{I = }}\dfrac{1}{{128}}\left( {3x + {c_1} + \left( { - \dfrac{{\sin 8x}}{8} + {c_2}} \right) - 4\left( { - \dfrac{{\sin 4x}}{4} + {c_3}} \right)} \right)$
Where ${c_1},{\text{ }}{c_2}{\text{ }}and{\text{ }}{c_3}$ are the constants of integration.
After simplifying and rearranging the terms,
$ \Rightarrow {\text{I = }}\dfrac{1}{{128}}\left( {3x + \left( { - \dfrac{{\sin 8x}}{8}} \right) + \left( {\sin 4x} \right) + C} \right)$
Where $C = {c_1}{\text{ + }}{c_2} - 4{c_3}$
Note: The value of the constant can be found if the initial condition is given i.e. when x=0, the result of the integration would be some constant value, and by equating the value of the constant of integration can be found. This is indefinite-integral hence the constant of integration must be there but if it is definite-integral then the final answer would be some constant value. Also the results of the standard indefinite integral must be known so that it can be used directly.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
