
Evaluate \[\int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} \].
Answer
570.6k+ views
Hint: Here we will use the basic integration formula which states that integration of any variable \[x\] will be equals to as below:
\[\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + {\text{C}}} \] , where \[x\] is any variable and \[{\text{C}}\] is an arbitrary constant.
Complete step-by-step solution:
Step 1: In the given expression \[I = \int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} \] , let \[\tan x = t\]. Therefore, \[{\sec ^2}xdx = dt\].
By substituting the value of \[{\sec ^2}xdx = dt\] in the given expression \[I = \int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} \] , we get:
\[ \Rightarrow I = \int {\dfrac{{dt}}{{3 + {t^2}}}} \]
By taking \[3\] out of the integral and writing \[3 = {\left( {\sqrt 3 } \right)^2}\] in the expression \[I = \int {\dfrac{{dt}}{{3 + {t^2}}}} \] , we get:
\[ \Rightarrow I = \dfrac{1}{{{{\left( {\sqrt 3 } \right)}^2}}}\int {\dfrac{{dt}}{{1 + \dfrac{{{t^2}}}{{{{\left( {\sqrt 3 } \right)}^2}}}}}} \] ………… (1)
Step 2: In the expression (1), by bringing \[\dfrac{1}{{\sqrt 3 }}\] inside the derivative symbol, we get:
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }}\int {\dfrac{{d\dfrac{t}{{\sqrt 3 }}}}{{1 + {{\left( {\dfrac{t}{{\sqrt 3 }}} \right)}^2}}}} \]
Now, by using the formula \[\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + {\text{C}}} \] in the above expression, we get:
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\dfrac{t}{{\sqrt 3 }} + {\text{C}}\] , where \[{\text{C}}\] is an arbitrary constant.
Step 3: By substituting the value of \[\tan x = t\] in the expression \[I = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\dfrac{t}{{\sqrt 3 }} + {\text{C}}\] , we get:
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\tan x}}{{\sqrt 3 }}} \right) + {\text{C}}\]
The value of the integral \[\int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\tan x}}{{\sqrt 3 }}} \right) + {\text{C}}\]
Note: Students needs to remember that \[\int {{{\sec }^2}xdx} = \tan x + {\text{C}}\] , the explanation is given below for better understanding:
Let \[I = \int {{{\sec }^2}xdx} \]
By multiplying and dividing the expression \[\int {{{\sec }^2}xdx} \] with \[\tan x\] , we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x\tan x}}{{\tan x}}dx} \]
Let, \[\sec x = t\] and by taking the derivative of it, we get \[\sec x\tan xdx = dt\].
Also, we know that, \[\tan x = \sqrt {{{\sec }^2}x - 1} \]. So, by putting these values in the expression \[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x\tan x}}{{\tan x}}dx} \] , we get:
\[ \Rightarrow I = \int {\dfrac{t}{{\sqrt {{t^2} - 1} }}dt} \]
Assume that \[{t^2} - 1 = u\], so by taking the derivative of it we get:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{t^2} - 1} \right) = du\]
By simplifying the LHS side, we get:
\[ \Rightarrow 2tdt = du\]
By doing the integration in the above expression, we get:
\[ \Rightarrow I = \dfrac{1}{2}\int {{u^{ - \dfrac{1}{2}}}du} \]
By simplifying the terms in the RHS side, we get:
\[ \Rightarrow I = \left( {\dfrac{1}{2}} \right)\dfrac{{\sqrt u }}{{\left( {\dfrac{1}{2}} \right)}}\]
\[ \Rightarrow I = \sqrt u \]
By substituting the value of \[{t^2} - 1 = u\]in the above expression \[I = \sqrt u \], we get:
\[ \Rightarrow I = \sqrt {{t^2} - 1} \]
Now, by substituting the value of \[\sec x = t\] in the above expression \[I = \sqrt {{t^2} - 1} \], we get:
\[ \Rightarrow I = \sqrt {{{\sec }^2}x - 1} \]
But we know that \[{\sec ^2}x - 1 = \tan x\], so by substituting this value in the above expression we get:
\[ \Rightarrow I = \sqrt {{{\tan }^2}x} \]
\[ \Rightarrow I = \tan x + {\text{C}}\] , where \[{\text{C}}\] is an arbitrary constant.
\[\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + {\text{C}}} \] , where \[x\] is any variable and \[{\text{C}}\] is an arbitrary constant.
Complete step-by-step solution:
Step 1: In the given expression \[I = \int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} \] , let \[\tan x = t\]. Therefore, \[{\sec ^2}xdx = dt\].
By substituting the value of \[{\sec ^2}xdx = dt\] in the given expression \[I = \int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} \] , we get:
\[ \Rightarrow I = \int {\dfrac{{dt}}{{3 + {t^2}}}} \]
By taking \[3\] out of the integral and writing \[3 = {\left( {\sqrt 3 } \right)^2}\] in the expression \[I = \int {\dfrac{{dt}}{{3 + {t^2}}}} \] , we get:
\[ \Rightarrow I = \dfrac{1}{{{{\left( {\sqrt 3 } \right)}^2}}}\int {\dfrac{{dt}}{{1 + \dfrac{{{t^2}}}{{{{\left( {\sqrt 3 } \right)}^2}}}}}} \] ………… (1)
Step 2: In the expression (1), by bringing \[\dfrac{1}{{\sqrt 3 }}\] inside the derivative symbol, we get:
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }}\int {\dfrac{{d\dfrac{t}{{\sqrt 3 }}}}{{1 + {{\left( {\dfrac{t}{{\sqrt 3 }}} \right)}^2}}}} \]
Now, by using the formula \[\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + {\text{C}}} \] in the above expression, we get:
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\dfrac{t}{{\sqrt 3 }} + {\text{C}}\] , where \[{\text{C}}\] is an arbitrary constant.
Step 3: By substituting the value of \[\tan x = t\] in the expression \[I = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\dfrac{t}{{\sqrt 3 }} + {\text{C}}\] , we get:
\[ \Rightarrow I = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\tan x}}{{\sqrt 3 }}} \right) + {\text{C}}\]
The value of the integral \[\int {\dfrac{{{{\sec }^2}x}}{{3 + {{\tan }^2}x}}dx} = \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\tan x}}{{\sqrt 3 }}} \right) + {\text{C}}\]
Note: Students needs to remember that \[\int {{{\sec }^2}xdx} = \tan x + {\text{C}}\] , the explanation is given below for better understanding:
Let \[I = \int {{{\sec }^2}xdx} \]
By multiplying and dividing the expression \[\int {{{\sec }^2}xdx} \] with \[\tan x\] , we get:
\[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x\tan x}}{{\tan x}}dx} \]
Let, \[\sec x = t\] and by taking the derivative of it, we get \[\sec x\tan xdx = dt\].
Also, we know that, \[\tan x = \sqrt {{{\sec }^2}x - 1} \]. So, by putting these values in the expression \[ \Rightarrow I = \int {\dfrac{{{{\sec }^2}x\tan x}}{{\tan x}}dx} \] , we get:
\[ \Rightarrow I = \int {\dfrac{t}{{\sqrt {{t^2} - 1} }}dt} \]
Assume that \[{t^2} - 1 = u\], so by taking the derivative of it we get:
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{t^2} - 1} \right) = du\]
By simplifying the LHS side, we get:
\[ \Rightarrow 2tdt = du\]
By doing the integration in the above expression, we get:
\[ \Rightarrow I = \dfrac{1}{2}\int {{u^{ - \dfrac{1}{2}}}du} \]
By simplifying the terms in the RHS side, we get:
\[ \Rightarrow I = \left( {\dfrac{1}{2}} \right)\dfrac{{\sqrt u }}{{\left( {\dfrac{1}{2}} \right)}}\]
\[ \Rightarrow I = \sqrt u \]
By substituting the value of \[{t^2} - 1 = u\]in the above expression \[I = \sqrt u \], we get:
\[ \Rightarrow I = \sqrt {{t^2} - 1} \]
Now, by substituting the value of \[\sec x = t\] in the above expression \[I = \sqrt {{t^2} - 1} \], we get:
\[ \Rightarrow I = \sqrt {{{\sec }^2}x - 1} \]
But we know that \[{\sec ^2}x - 1 = \tan x\], so by substituting this value in the above expression we get:
\[ \Rightarrow I = \sqrt {{{\tan }^2}x} \]
\[ \Rightarrow I = \tan x + {\text{C}}\] , where \[{\text{C}}\] is an arbitrary constant.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

