
Evaluate $\int {\dfrac{{dx}}{{\sin x + \cos x}}} $
A) $\log \tan \left( {\dfrac{\pi }{8} + \dfrac{x}{2}} \right) + C$
B) $\log \tan \left( {\dfrac{\pi }{8} - \dfrac{x}{2}} \right) + C$
C) $\dfrac{1}{{\sqrt 2 }}\log \tan \left( {\dfrac{\pi }{8} + \dfrac{x}{2}} \right) + C$
Answer
585.3k+ views
Hint: We will multiply and divide the whole expression with $\dfrac{1}{{\sqrt 2 }}$ and then term is as $\sin \dfrac{\pi }{4}$ or $\cos \dfrac{\pi }{4}$ as per our requirements and then, we will see a formula in it to combine and our integral will become really easy to be solved.
Complete step-by-step answer:
We have $I = \int {\dfrac{{dx}}{{\sin x + \cos x}}} $
We can rewrite this as $I = \int {\dfrac{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)dx}}{{\sin x\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \cos x\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}} $
We can also rewrite this as: $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\dfrac{{dx}}{{\sin x\cos \dfrac{\pi }{4} + \cos x\sin \dfrac{\pi }{4}}}} $
We also know that $\sin (x + y) = \sin x\cos y + \cos x\sin y$.
So, we will get:- $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\dfrac{{dx}}{{\sin \left( {x + \dfrac{\pi }{4}} \right)}}} $
We know that $\sin x = \dfrac{1}{{\cos ecx}}$
$I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\cos ec\left( {x + \dfrac{\pi }{4}} \right)dx} $
Now using the formula: \[\int {\cos ecx = \ln \left| {\tan \dfrac{x}{2}} \right| + C} \]
Hence, we get: $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\tan \left( {\dfrac{x}{2} + \dfrac{\pi }{8}} \right) + C$
Hence, the correct option is (C).
Note: Let us look at the alternate methods for the same question in brief:-
Method 1:
Let $I = \int {\dfrac{{dx}}{{\sin x + \cos x}}} $
We know that we have the formulas: $\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}$ and $\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$
Now, putting in $\theta = \dfrac{x}{2}$ in these formulas, we will get:-
$\sin x = \dfrac{{2\tan \left( {\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}$ and $\cos x = \dfrac{{1 - {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}$.
Putting these in the given expression, we will get:-
$ \Rightarrow I = \int {\dfrac{{dx}}{{\sin x + \cos x}}} = \int {\dfrac{{dx}}{{\dfrac{{2\tan \left( {\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)}} + \dfrac{{1 - {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}}}} $
Simplifying the RHS, we will get the following expression:-
$ \Rightarrow I = \int {\dfrac{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)dx}}{{2\tan \left( {\dfrac{x}{2}} \right) + 1 - {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}} $
Now, we also know that $1 + {\tan ^2}\theta = {\sec ^2}\theta $. Putting this, we will get the following expression:-
$ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\left( {\dfrac{x}{2}} \right)dx}}{{2\tan \left( {\dfrac{x}{2}} \right) + 1 - {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}} $
We can write this as:-
$ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\left( {\dfrac{x}{2}} \right)dx}}{{2 - \left[ {1 - 2\tan \left( {\dfrac{x}{2}} \right) + {{\tan }^2}\left( {\dfrac{x}{2}} \right)} \right]}}} $
We will now use the formula: ${(a - b)^2} = {a^2} + {b^2} - 2ab$. Thus, we will get:-
$ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\left( {\dfrac{x}{2}} \right)dx}}{{2 - {{\left( {\tan \left( {\dfrac{x}{2}} \right) - 1} \right)}^2}}}} $ ……..(X)
Now, assume that $t = \tan \dfrac{x}{2}$. So, we will have: $dt = \dfrac{d}{{dx}}\left( {\tan \dfrac{x}{2}} \right) \times \dfrac{d}{{dx}}\left( {\dfrac{x}{2}} \right)$.
We know that $\dfrac{d}{{d\theta }}(\tan \theta ) = {\sec ^2}\theta $.
So, we have:- $dt = \dfrac{1}{2}{\sec ^2}\dfrac{x}{2}$
Putting all these in (X), we will get:-
$ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\left( {\dfrac{x}{2}} \right)dx}}{{2 - {{\left( {\tan \left( {\dfrac{x}{2}} \right) - 1} \right)}^2}}}} = \int {\dfrac{{2dt}}{{2 - {{\left( {t - 1} \right)}^2}}}} $
We can write this as follows by using the formula: ${a^2} - {b^2} = (a - b)(a + b)$.
$ \Rightarrow I = 2\int {\dfrac{{dt}}{{\left( {\sqrt 2 + \left( {t - 1} \right)} \right)\left( {\sqrt 2 - \left( {t - 1} \right)} \right)}}} $
Rearranging the terms to get the following expression:-
\[ \Rightarrow I = \dfrac{1}{{\sqrt 2 }}\int {\left( {\dfrac{1}{{\sqrt 2 + \left( {t - 1} \right)}}} \right.} + \left. {\dfrac{1}{{\sqrt 2 - \left( {t - 1} \right)}}} \right)dt\] ………….(Y)
We also know that $\int {\dfrac{{dx}}{{x + a}}} = \ln |x + a| + C$
Hence, using this in (Y), we will get:-
\[ \Rightarrow I = \dfrac{1}{{\sqrt 2 }}\left\{ {\ln |\sqrt 2 + (t - 1)| - \ln |\sqrt 2 - (t - 1)|} \right\} + C\]
Now, we can just modify this as per our requirements and if there are no options given, we can leave it here only.
Method 2:
We have $I = \int {\dfrac{{dx}}{{\sin x + \cos x}}} $
We can rewrite this as $I = \int {\dfrac{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)dx}}{{\sin x\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \cos x\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}} $
We can also rewrite this as: $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\dfrac{{dx}}{{\sin x\sin \dfrac{\pi }{4} + \cos x\cos \dfrac{\pi }{4}}}} $
We also know that $\cos (x - y) = \sin x\sin y + \cos x\cos y$.
So, we will get:- $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\dfrac{{dx}}{{\cos \left( {x - \dfrac{\pi }{4}} \right)}}} $
Let $u = x - \dfrac{\pi }{4}$
$I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\sec udu} $
Now using the formula: \[\int {\sec x = \ln \left| {\sec x + \tan x} \right| + C} \]
Hence, we get: $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\ln \left| {\sec u + \tan u} \right| + C$
Now, just put in the value of u as we assumed and thus, we get our answer.
Complete step-by-step answer:
We have $I = \int {\dfrac{{dx}}{{\sin x + \cos x}}} $
We can rewrite this as $I = \int {\dfrac{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)dx}}{{\sin x\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \cos x\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}} $
We can also rewrite this as: $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\dfrac{{dx}}{{\sin x\cos \dfrac{\pi }{4} + \cos x\sin \dfrac{\pi }{4}}}} $
We also know that $\sin (x + y) = \sin x\cos y + \cos x\sin y$.
So, we will get:- $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\dfrac{{dx}}{{\sin \left( {x + \dfrac{\pi }{4}} \right)}}} $
We know that $\sin x = \dfrac{1}{{\cos ecx}}$
$I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\cos ec\left( {x + \dfrac{\pi }{4}} \right)dx} $
Now using the formula: \[\int {\cos ecx = \ln \left| {\tan \dfrac{x}{2}} \right| + C} \]
Hence, we get: $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\tan \left( {\dfrac{x}{2} + \dfrac{\pi }{8}} \right) + C$
Hence, the correct option is (C).
Note: Let us look at the alternate methods for the same question in brief:-
Method 1:
Let $I = \int {\dfrac{{dx}}{{\sin x + \cos x}}} $
We know that we have the formulas: $\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}$ and $\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$
Now, putting in $\theta = \dfrac{x}{2}$ in these formulas, we will get:-
$\sin x = \dfrac{{2\tan \left( {\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}$ and $\cos x = \dfrac{{1 - {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}$.
Putting these in the given expression, we will get:-
$ \Rightarrow I = \int {\dfrac{{dx}}{{\sin x + \cos x}}} = \int {\dfrac{{dx}}{{\dfrac{{2\tan \left( {\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)}} + \dfrac{{1 - {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}}}} $
Simplifying the RHS, we will get the following expression:-
$ \Rightarrow I = \int {\dfrac{{1 + {{\tan }^2}\left( {\dfrac{x}{2}} \right)dx}}{{2\tan \left( {\dfrac{x}{2}} \right) + 1 - {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}} $
Now, we also know that $1 + {\tan ^2}\theta = {\sec ^2}\theta $. Putting this, we will get the following expression:-
$ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\left( {\dfrac{x}{2}} \right)dx}}{{2\tan \left( {\dfrac{x}{2}} \right) + 1 - {{\tan }^2}\left( {\dfrac{x}{2}} \right)}}} $
We can write this as:-
$ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\left( {\dfrac{x}{2}} \right)dx}}{{2 - \left[ {1 - 2\tan \left( {\dfrac{x}{2}} \right) + {{\tan }^2}\left( {\dfrac{x}{2}} \right)} \right]}}} $
We will now use the formula: ${(a - b)^2} = {a^2} + {b^2} - 2ab$. Thus, we will get:-
$ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\left( {\dfrac{x}{2}} \right)dx}}{{2 - {{\left( {\tan \left( {\dfrac{x}{2}} \right) - 1} \right)}^2}}}} $ ……..(X)
Now, assume that $t = \tan \dfrac{x}{2}$. So, we will have: $dt = \dfrac{d}{{dx}}\left( {\tan \dfrac{x}{2}} \right) \times \dfrac{d}{{dx}}\left( {\dfrac{x}{2}} \right)$.
We know that $\dfrac{d}{{d\theta }}(\tan \theta ) = {\sec ^2}\theta $.
So, we have:- $dt = \dfrac{1}{2}{\sec ^2}\dfrac{x}{2}$
Putting all these in (X), we will get:-
$ \Rightarrow I = \int {\dfrac{{{{\sec }^2}\left( {\dfrac{x}{2}} \right)dx}}{{2 - {{\left( {\tan \left( {\dfrac{x}{2}} \right) - 1} \right)}^2}}}} = \int {\dfrac{{2dt}}{{2 - {{\left( {t - 1} \right)}^2}}}} $
We can write this as follows by using the formula: ${a^2} - {b^2} = (a - b)(a + b)$.
$ \Rightarrow I = 2\int {\dfrac{{dt}}{{\left( {\sqrt 2 + \left( {t - 1} \right)} \right)\left( {\sqrt 2 - \left( {t - 1} \right)} \right)}}} $
Rearranging the terms to get the following expression:-
\[ \Rightarrow I = \dfrac{1}{{\sqrt 2 }}\int {\left( {\dfrac{1}{{\sqrt 2 + \left( {t - 1} \right)}}} \right.} + \left. {\dfrac{1}{{\sqrt 2 - \left( {t - 1} \right)}}} \right)dt\] ………….(Y)
We also know that $\int {\dfrac{{dx}}{{x + a}}} = \ln |x + a| + C$
Hence, using this in (Y), we will get:-
\[ \Rightarrow I = \dfrac{1}{{\sqrt 2 }}\left\{ {\ln |\sqrt 2 + (t - 1)| - \ln |\sqrt 2 - (t - 1)|} \right\} + C\]
Now, we can just modify this as per our requirements and if there are no options given, we can leave it here only.
Method 2:
We have $I = \int {\dfrac{{dx}}{{\sin x + \cos x}}} $
We can rewrite this as $I = \int {\dfrac{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)dx}}{{\sin x\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \cos x\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}} $
We can also rewrite this as: $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\dfrac{{dx}}{{\sin x\sin \dfrac{\pi }{4} + \cos x\cos \dfrac{\pi }{4}}}} $
We also know that $\cos (x - y) = \sin x\sin y + \cos x\cos y$.
So, we will get:- $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\dfrac{{dx}}{{\cos \left( {x - \dfrac{\pi }{4}} \right)}}} $
Let $u = x - \dfrac{\pi }{4}$
$I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\int {\sec udu} $
Now using the formula: \[\int {\sec x = \ln \left| {\sec x + \tan x} \right| + C} \]
Hence, we get: $I = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\ln \left| {\sec u + \tan u} \right| + C$
Now, just put in the value of u as we assumed and thus, we get our answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

