
How do you evaluate $\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} $?
Answer
547.2k+ views
Hint: We can use Integration by substitution to solve this integral. So, first substitute $u = \sqrt x $ and find its differentiation with respect to $x$ using differentiation properties. Then substitute the value of $x$ and value of $dx$ in the given integral. Next, integrate using integration properties. Finally, substitute the value of $u$, and get the desired result.
Formula used: The differentiation of the product of a constant and a function = the constant $ \times $ differentiation of the function.
i.e., $\dfrac{d}{{dx}}\left( {kf\left( x \right)} \right) = k\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$, where $k$ is a constant.
Differentiation formula: $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},n \ne - 1$
The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
Integration formula: $\int {{{\tan }^{ - 1}}xdx} = x{\tan ^{ - 1}}x - \dfrac{1}{2}\ln \left( {1 + {x^2}} \right) + C$
Complete step-by-step solution:
We have to find $\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} $...............…(i)
We will use Integration by substitution to solve this integral.
So, for the integral involving the root$\sqrt x $, we use the substitution:
$u = \sqrt x $...............…(ii)
Now, we have to differentiate $u$ with respect to $x$.
So, differentiating $u$ with respect to $x$, we get
$\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt x } \right)$...............…(iii)
Now, using the differentiation formula $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},n \ne - 1$ in above differentiation and find the value of $dx$.
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{2\sqrt x }}$
$ \Rightarrow dx = 2\sqrt x du$...............…(iv)
Now, we have to substitute the value of $\sqrt x $ from (ii) and the value of $dx$ from (iv) in integral (i).
\[\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = \int {\dfrac{{\arctan \left( u \right)}}{{\sqrt x }} \times 2\sqrt x du} \]
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = \int {\arctan \left( u \right) \times 2du} $...............…(v)
Now, using the property that the integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
So, in above integral (v), constant $2$ can be taken outside the integral.
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\int {\arctan \left( u \right)du} $..............…(vi)
Now, using the integration formula $\int {{{\tan }^{ - 1}}xdx} = x{\tan ^{ - 1}}x - \dfrac{1}{2}\ln \left( {1 + {x^2}} \right) + C$ in integral (vi), we get
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\left[ {u\arctan \left( u \right) - \dfrac{1}{2}\ln \left( {1 + {u^2}} \right)} \right] + C$
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2u\arctan \left( u \right) - \ln \left( {1 + {u^2}} \right) + C$…(vii)
We have to find the integral in terms of $x$. So, replacing $u$ with $x$ using (ii).
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C$
Hence, $\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C$.
Note: We can also solve the given integral by Integration by parts: $\int {udv} = uv - \int {vdu} $.
Use integration by parts with $u = \arctan \left( {\sqrt x } \right)$ and $dv = \dfrac{1}{{\sqrt x }}dx$
Differentiate $u$ with respect to $x$.
$\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\arctan \sqrt x } \right)$
Now, using the differentiation formula $\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}}$ in above differentiation, we get
$\dfrac{{du}}{{dx}} = \dfrac{1}{{1 + x}} \times \dfrac{1}{{2\sqrt x }}$
$ \Rightarrow du = \dfrac{1}{{2\sqrt x \left( {x + 1} \right)}}dx$
Now, integrate $v$ with respect to $x$.
$\int {dv} = \int {\dfrac{1}{{\sqrt x }}dx} $
Now, using the integration formula $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}},n \ne - 1$ in above integral, we get
$v = 2\sqrt x $
The integration by parts formula is:
$\int {udv} = uv - \int {vdu} $
Put the value of $u,v,du,dv$.
$\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \int {2\sqrt x \times \dfrac{1}{{2\sqrt x \left( {x + 1} \right)}}dx} $
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \int {\dfrac{1}{{\left( {x + 1} \right)}}dx} $
Now, using the integration formula $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}},n \ne - 1$ in above integral, we get
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C$
Hence, $\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C$.
Formula used: The differentiation of the product of a constant and a function = the constant $ \times $ differentiation of the function.
i.e., $\dfrac{d}{{dx}}\left( {kf\left( x \right)} \right) = k\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$, where $k$ is a constant.
Differentiation formula: $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},n \ne - 1$
The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
Integration formula: $\int {{{\tan }^{ - 1}}xdx} = x{\tan ^{ - 1}}x - \dfrac{1}{2}\ln \left( {1 + {x^2}} \right) + C$
Complete step-by-step solution:
We have to find $\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} $...............…(i)
We will use Integration by substitution to solve this integral.
So, for the integral involving the root$\sqrt x $, we use the substitution:
$u = \sqrt x $...............…(ii)
Now, we have to differentiate $u$ with respect to $x$.
So, differentiating $u$ with respect to $x$, we get
$\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt x } \right)$...............…(iii)
Now, using the differentiation formula $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},n \ne - 1$ in above differentiation and find the value of $dx$.
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{2\sqrt x }}$
$ \Rightarrow dx = 2\sqrt x du$...............…(iv)
Now, we have to substitute the value of $\sqrt x $ from (ii) and the value of $dx$ from (iv) in integral (i).
\[\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = \int {\dfrac{{\arctan \left( u \right)}}{{\sqrt x }} \times 2\sqrt x du} \]
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = \int {\arctan \left( u \right) \times 2du} $...............…(v)
Now, using the property that the integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
So, in above integral (v), constant $2$ can be taken outside the integral.
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\int {\arctan \left( u \right)du} $..............…(vi)
Now, using the integration formula $\int {{{\tan }^{ - 1}}xdx} = x{\tan ^{ - 1}}x - \dfrac{1}{2}\ln \left( {1 + {x^2}} \right) + C$ in integral (vi), we get
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\left[ {u\arctan \left( u \right) - \dfrac{1}{2}\ln \left( {1 + {u^2}} \right)} \right] + C$
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2u\arctan \left( u \right) - \ln \left( {1 + {u^2}} \right) + C$…(vii)
We have to find the integral in terms of $x$. So, replacing $u$ with $x$ using (ii).
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C$
Hence, $\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C$.
Note: We can also solve the given integral by Integration by parts: $\int {udv} = uv - \int {vdu} $.
Use integration by parts with $u = \arctan \left( {\sqrt x } \right)$ and $dv = \dfrac{1}{{\sqrt x }}dx$
Differentiate $u$ with respect to $x$.
$\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\arctan \sqrt x } \right)$
Now, using the differentiation formula $\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}}$ in above differentiation, we get
$\dfrac{{du}}{{dx}} = \dfrac{1}{{1 + x}} \times \dfrac{1}{{2\sqrt x }}$
$ \Rightarrow du = \dfrac{1}{{2\sqrt x \left( {x + 1} \right)}}dx$
Now, integrate $v$ with respect to $x$.
$\int {dv} = \int {\dfrac{1}{{\sqrt x }}dx} $
Now, using the integration formula $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}},n \ne - 1$ in above integral, we get
$v = 2\sqrt x $
The integration by parts formula is:
$\int {udv} = uv - \int {vdu} $
Put the value of $u,v,du,dv$.
$\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \int {2\sqrt x \times \dfrac{1}{{2\sqrt x \left( {x + 1} \right)}}dx} $
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \int {\dfrac{1}{{\left( {x + 1} \right)}}dx} $
Now, using the integration formula $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}},n \ne - 1$ in above integral, we get
$ \Rightarrow \int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C$
Hence, $\int {\dfrac{{\arctan \left( {\sqrt x } \right)}}{{\sqrt x }}dx} = 2\sqrt x \arctan \left( {\sqrt x } \right) - \ln \left| {x + 1} \right| + C$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

