
Evaluate \[\int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx\]
A) \[\log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
B) \[\log \cos \left( {\dfrac{\pi }{4} + x} \right)\]
C) \[\log \sin \left( {\dfrac{\pi }{4} - x} \right)\]
D) \[\log \sin \left( {\dfrac{\pi }{4} + x} \right)\]
Answer
542.4k+ views
Hint:
Here, we have to find the integral of the given function. First we have to simplify the function using the trigonometric identities. Then we will integrate the function using the formula. Integration is a way of adding slices to find the whole. Integration is the act of bringing together smaller components into a single system that functions as one.
Formula Used:
We will use the following formulas:
Trigonometric Identity: \[\tan (A \pm B) = \dfrac{{\tan A \pm \tan B}}{{1 \mp \tan A\tan B}}\] ; \[{\sec ^{ - 1}}x = \cos x\]
Trigonometric Value: \[\tan \dfrac{\pi }{4} = 1\]
Integral Formula:\[\int {\tan x} dx = - \log \left( {\sec x} \right) + C\]
Logarithmic Formula: \[a\log b = \log {b^a}\]
Complete step by step solution:
We will use the formula of trigonometric identity to get the expression given in question.
Using \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\] formula for\[\tan \left( {\dfrac{\pi }{4} - x} \right)\], we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}\]
Since \[\tan \dfrac{\pi }{4} = 1\], so we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{1 - \tan x}}{{1 + (1)\tan x}}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{1 - \tan x}}{{1 + \tan x}}\]
\[ \Rightarrow \dfrac{{1 - \tan x}}{{1 + \tan x}} = \tan \left( {\dfrac{\pi }{4} - x} \right)\]
Substituting the value of \[\dfrac{{1 - \tan x}}{{1 + \tan x}} = \tan \left( {\dfrac{\pi }{4} - x} \right)\] , in , we get
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx\]
Using \[\int {\tan x} dx = - \log \left( {\sec x} \right) + C\], we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = - \log \sec \left( {\dfrac{\pi }{4} - x} \right) + C\]
Using Logarithmic Formula \[a\log b = \log {b^a}\], we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log {\sec ^{ - 1}}\left( {\dfrac{\pi }{4} - x} \right) + C\]
We know that, \[{\sec ^{ - 1}}x = \cos x\], so we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right) + C\]
Arbitrary Constant is neglected, so we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
Therefore, \[\int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
Note:
We can find the integral also by using the substitution method.
Rewriting tangent in terms of sine and cosine, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{1 - \dfrac{{\sin x}}{{\cos x}}}}{{1 + \dfrac{{\sin x}}{{\cos x}}}}} dx\]
By cross-multiplication method, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}{{\dfrac{{\cos x + \sin x}}{{\cos x}}}}} dx\]
Cancelling the denominator, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}} dx\]
Substituting the denominator \[u = \cos x + \sin x\] and differentiating the denominator, we have \[\dfrac{{du}}{{dx}} = \cos x - \sin x\] , we get
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{1}{u}} du\]
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log u + C\]
Rewriting the term, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log (\cos x + \sin x) + C\]
Here, we have to find the integral of the given function. First we have to simplify the function using the trigonometric identities. Then we will integrate the function using the formula. Integration is a way of adding slices to find the whole. Integration is the act of bringing together smaller components into a single system that functions as one.
Formula Used:
We will use the following formulas:
Trigonometric Identity: \[\tan (A \pm B) = \dfrac{{\tan A \pm \tan B}}{{1 \mp \tan A\tan B}}\] ; \[{\sec ^{ - 1}}x = \cos x\]
Trigonometric Value: \[\tan \dfrac{\pi }{4} = 1\]
Integral Formula:\[\int {\tan x} dx = - \log \left( {\sec x} \right) + C\]
Logarithmic Formula: \[a\log b = \log {b^a}\]
Complete step by step solution:
We will use the formula of trigonometric identity to get the expression given in question.
Using \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\] formula for\[\tan \left( {\dfrac{\pi }{4} - x} \right)\], we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}\]
Since \[\tan \dfrac{\pi }{4} = 1\], so we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{1 - \tan x}}{{1 + (1)\tan x}}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{1 - \tan x}}{{1 + \tan x}}\]
\[ \Rightarrow \dfrac{{1 - \tan x}}{{1 + \tan x}} = \tan \left( {\dfrac{\pi }{4} - x} \right)\]
Substituting the value of \[\dfrac{{1 - \tan x}}{{1 + \tan x}} = \tan \left( {\dfrac{\pi }{4} - x} \right)\] , in , we get
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx\]
Using \[\int {\tan x} dx = - \log \left( {\sec x} \right) + C\], we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = - \log \sec \left( {\dfrac{\pi }{4} - x} \right) + C\]
Using Logarithmic Formula \[a\log b = \log {b^a}\], we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log {\sec ^{ - 1}}\left( {\dfrac{\pi }{4} - x} \right) + C\]
We know that, \[{\sec ^{ - 1}}x = \cos x\], so we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right) + C\]
Arbitrary Constant is neglected, so we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
Therefore, \[\int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
Note:
We can find the integral also by using the substitution method.
Rewriting tangent in terms of sine and cosine, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{1 - \dfrac{{\sin x}}{{\cos x}}}}{{1 + \dfrac{{\sin x}}{{\cos x}}}}} dx\]
By cross-multiplication method, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}{{\dfrac{{\cos x + \sin x}}{{\cos x}}}}} dx\]
Cancelling the denominator, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}} dx\]
Substituting the denominator \[u = \cos x + \sin x\] and differentiating the denominator, we have \[\dfrac{{du}}{{dx}} = \cos x - \sin x\] , we get
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{1}{u}} du\]
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log u + C\]
Rewriting the term, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log (\cos x + \sin x) + C\]
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

