
Evaluate \[\int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx\]
A) \[\log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
B) \[\log \cos \left( {\dfrac{\pi }{4} + x} \right)\]
C) \[\log \sin \left( {\dfrac{\pi }{4} - x} \right)\]
D) \[\log \sin \left( {\dfrac{\pi }{4} + x} \right)\]
Answer
569.4k+ views
Hint:
Here, we have to find the integral of the given function. First we have to simplify the function using the trigonometric identities. Then we will integrate the function using the formula. Integration is a way of adding slices to find the whole. Integration is the act of bringing together smaller components into a single system that functions as one.
Formula Used:
We will use the following formulas:
Trigonometric Identity: \[\tan (A \pm B) = \dfrac{{\tan A \pm \tan B}}{{1 \mp \tan A\tan B}}\] ; \[{\sec ^{ - 1}}x = \cos x\]
Trigonometric Value: \[\tan \dfrac{\pi }{4} = 1\]
Integral Formula:\[\int {\tan x} dx = - \log \left( {\sec x} \right) + C\]
Logarithmic Formula: \[a\log b = \log {b^a}\]
Complete step by step solution:
We will use the formula of trigonometric identity to get the expression given in question.
Using \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\] formula for\[\tan \left( {\dfrac{\pi }{4} - x} \right)\], we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}\]
Since \[\tan \dfrac{\pi }{4} = 1\], so we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{1 - \tan x}}{{1 + (1)\tan x}}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{1 - \tan x}}{{1 + \tan x}}\]
\[ \Rightarrow \dfrac{{1 - \tan x}}{{1 + \tan x}} = \tan \left( {\dfrac{\pi }{4} - x} \right)\]
Substituting the value of \[\dfrac{{1 - \tan x}}{{1 + \tan x}} = \tan \left( {\dfrac{\pi }{4} - x} \right)\] , in , we get
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx\]
Using \[\int {\tan x} dx = - \log \left( {\sec x} \right) + C\], we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = - \log \sec \left( {\dfrac{\pi }{4} - x} \right) + C\]
Using Logarithmic Formula \[a\log b = \log {b^a}\], we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log {\sec ^{ - 1}}\left( {\dfrac{\pi }{4} - x} \right) + C\]
We know that, \[{\sec ^{ - 1}}x = \cos x\], so we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right) + C\]
Arbitrary Constant is neglected, so we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
Therefore, \[\int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
Note:
We can find the integral also by using the substitution method.
Rewriting tangent in terms of sine and cosine, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{1 - \dfrac{{\sin x}}{{\cos x}}}}{{1 + \dfrac{{\sin x}}{{\cos x}}}}} dx\]
By cross-multiplication method, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}{{\dfrac{{\cos x + \sin x}}{{\cos x}}}}} dx\]
Cancelling the denominator, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}} dx\]
Substituting the denominator \[u = \cos x + \sin x\] and differentiating the denominator, we have \[\dfrac{{du}}{{dx}} = \cos x - \sin x\] , we get
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{1}{u}} du\]
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log u + C\]
Rewriting the term, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log (\cos x + \sin x) + C\]
Here, we have to find the integral of the given function. First we have to simplify the function using the trigonometric identities. Then we will integrate the function using the formula. Integration is a way of adding slices to find the whole. Integration is the act of bringing together smaller components into a single system that functions as one.
Formula Used:
We will use the following formulas:
Trigonometric Identity: \[\tan (A \pm B) = \dfrac{{\tan A \pm \tan B}}{{1 \mp \tan A\tan B}}\] ; \[{\sec ^{ - 1}}x = \cos x\]
Trigonometric Value: \[\tan \dfrac{\pi }{4} = 1\]
Integral Formula:\[\int {\tan x} dx = - \log \left( {\sec x} \right) + C\]
Logarithmic Formula: \[a\log b = \log {b^a}\]
Complete step by step solution:
We will use the formula of trigonometric identity to get the expression given in question.
Using \[\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\] formula for\[\tan \left( {\dfrac{\pi }{4} - x} \right)\], we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan x}}{{1 + \tan \dfrac{\pi }{4}\tan x}}\]
Since \[\tan \dfrac{\pi }{4} = 1\], so we have
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{1 - \tan x}}{{1 + (1)\tan x}}\]
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4} - x} \right) = \dfrac{{1 - \tan x}}{{1 + \tan x}}\]
\[ \Rightarrow \dfrac{{1 - \tan x}}{{1 + \tan x}} = \tan \left( {\dfrac{\pi }{4} - x} \right)\]
Substituting the value of \[\dfrac{{1 - \tan x}}{{1 + \tan x}} = \tan \left( {\dfrac{\pi }{4} - x} \right)\] , in , we get
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx\]
Using \[\int {\tan x} dx = - \log \left( {\sec x} \right) + C\], we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = - \log \sec \left( {\dfrac{\pi }{4} - x} \right) + C\]
Using Logarithmic Formula \[a\log b = \log {b^a}\], we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log {\sec ^{ - 1}}\left( {\dfrac{\pi }{4} - x} \right) + C\]
We know that, \[{\sec ^{ - 1}}x = \cos x\], so we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right) + C\]
Arbitrary Constant is neglected, so we have
\[ \Rightarrow \int {\tan \left( {\dfrac{\pi }{4} - x} \right)} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
Therefore, \[\int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log \cos \left( {\dfrac{\pi }{4} - x} \right)\]
Note:
We can find the integral also by using the substitution method.
Rewriting tangent in terms of sine and cosine, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{1 - \dfrac{{\sin x}}{{\cos x}}}}{{1 + \dfrac{{\sin x}}{{\cos x}}}}} dx\]
By cross-multiplication method, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}{{\dfrac{{\cos x + \sin x}}{{\cos x}}}}} dx\]
Cancelling the denominator, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}} dx\]
Substituting the denominator \[u = \cos x + \sin x\] and differentiating the denominator, we have \[\dfrac{{du}}{{dx}} = \cos x - \sin x\] , we get
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \int {\dfrac{1}{u}} du\]
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log u + C\]
Rewriting the term, we have
\[ \Rightarrow \int {\dfrac{{1 - \tan x}}{{1 + \tan x}}} dx = \log (\cos x + \sin x) + C\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

