
Evaluate $ I = \int {\dfrac{{dx}}{{4x + 5}}} {\text{ }}\left( {x \geqslant 0} \right) $
A. $ 4\ln \left( {4x + 5} \right) $
B. $ 4\ln \left( {4x + 5} \right) + C $
C. $ \dfrac{{\ln \left( {4x + 5} \right)}}{4} $
D. $ \dfrac{1}{4}\ln \left( {4x + 5} \right) + C $
Answer
508.2k+ views
Hint: In order to find the Integral of the function, first simplify the term by taking the denominator as a variable. Differentiate the obtained equation of the denominator with respect to $ x $ , substitute the values in the main integral function. Solve the obtained equation using the formulas of integration known to us.
Formula used:
$ \dfrac{{dx}}{{dx}} = 1 $
$ \dfrac{{d\left( {{\text{constant}}} \right)}}{{dx}} = 0 $
$ \int {\dfrac{1}{y}dy} = \ln y + C' $
Complete step-by-step answer:
We are given with an integral function $ I = \int {\dfrac{{dx}}{{4x + 5}}} $ . ………(1)
Let us consider $ 4x + 5 $ to be $ y $ that is written as:
$ y = 4x + 5 $ ………(2)
Differentiating both the sides of equation (2), with respect to $ x $ :
$ \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {4x + 5} \right)}}{{dx}} $
Splitting the right side:
$ \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {4x} \right)}}{{dx}} + \dfrac{{d\left( 5 \right)}}{{dx}} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4dx}}{{dx}} + \dfrac{{d\left( 5 \right)}}{{dx}} $
Since, we know that $ \dfrac{{dx}}{{dx}} = 1 $ and $ \dfrac{{d5}}{{dx}} = 0 $ , so substituting these values in above equation, we get:
$ \Rightarrow \dfrac{{dy}}{{dx}} = 4 \times 1 + 0 $
$ \Rightarrow \dfrac{{dy}}{{dx}} = 4 $
Multiplying both the sides by $ dx $ , we get:
$
\Rightarrow \dfrac{{dy}}{{dx}} \times dx = 4dx \\
\Rightarrow dy = 4dx \;
$
Dividing both the sides by $ 4 $ , we get:
$
\Rightarrow \dfrac{{dy}}{4} = \dfrac{{4dx}}{4} \\
\Rightarrow \dfrac{{dy}}{4} = dx \\
\Rightarrow dx = \dfrac{{dy}}{4} \;
$
Substituting the value of $ dx = \dfrac{{dy}}{4} $ and $ y = 4x + 5 $ in the equation (1):
$ I = \int {\dfrac{{dx}}{{4x + 5}}} = \int {\dfrac{1}{y}\dfrac{{dy}}{4}} $
Taking the constant out of the integration, we get:
$ I = \dfrac{1}{4}\int {\dfrac{1}{y}dy} $
From the formulas of integration, we know $ \int {\dfrac{1}{y}dy} = \ln y + C' $ .
So, substituting this value in the above equation, we get:
$ I = \dfrac{1}{4}\int {\dfrac{1}{y}dy} $
$ \Rightarrow I = \dfrac{1}{4}\left( {\ln y + C'} \right) $
Opening the parenthesis:
$ \Rightarrow I = \dfrac{1}{4}\ln y + \dfrac{1}{4}C' $
$ \Rightarrow I = \dfrac{1}{4}\ln y + C $ where $ C,C' $ are constants.
Substituting the value of $ y $ from equation (2) in the above equation, and we get:
$ \Rightarrow I = \dfrac{1}{4}\ln \left( {4x + 5} \right) + C $
Which matches with the Option D.
Therefore, $ I = \int {\dfrac{{dx}}{{4x + 5}}} {\text{ = }}\dfrac{1}{4}\ln \left( {4x + 5} \right) + C $
Hence, Option D is correct.
So, the correct answer is “Option D”.
Note: Integration is nothing but the opposite of differentiation.
During differentiation, we know that the differentiation of a constant becomes zero, so the constant is removed, that’s why during integration a constant term is added to fulfil the requirement of that constant if removed.
Formula used:
$ \dfrac{{dx}}{{dx}} = 1 $
$ \dfrac{{d\left( {{\text{constant}}} \right)}}{{dx}} = 0 $
$ \int {\dfrac{1}{y}dy} = \ln y + C' $
Complete step-by-step answer:
We are given with an integral function $ I = \int {\dfrac{{dx}}{{4x + 5}}} $ . ………(1)
Let us consider $ 4x + 5 $ to be $ y $ that is written as:
$ y = 4x + 5 $ ………(2)
Differentiating both the sides of equation (2), with respect to $ x $ :
$ \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {4x + 5} \right)}}{{dx}} $
Splitting the right side:
$ \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {4x} \right)}}{{dx}} + \dfrac{{d\left( 5 \right)}}{{dx}} $
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4dx}}{{dx}} + \dfrac{{d\left( 5 \right)}}{{dx}} $
Since, we know that $ \dfrac{{dx}}{{dx}} = 1 $ and $ \dfrac{{d5}}{{dx}} = 0 $ , so substituting these values in above equation, we get:
$ \Rightarrow \dfrac{{dy}}{{dx}} = 4 \times 1 + 0 $
$ \Rightarrow \dfrac{{dy}}{{dx}} = 4 $
Multiplying both the sides by $ dx $ , we get:
$
\Rightarrow \dfrac{{dy}}{{dx}} \times dx = 4dx \\
\Rightarrow dy = 4dx \;
$
Dividing both the sides by $ 4 $ , we get:
$
\Rightarrow \dfrac{{dy}}{4} = \dfrac{{4dx}}{4} \\
\Rightarrow \dfrac{{dy}}{4} = dx \\
\Rightarrow dx = \dfrac{{dy}}{4} \;
$
Substituting the value of $ dx = \dfrac{{dy}}{4} $ and $ y = 4x + 5 $ in the equation (1):
$ I = \int {\dfrac{{dx}}{{4x + 5}}} = \int {\dfrac{1}{y}\dfrac{{dy}}{4}} $
Taking the constant out of the integration, we get:
$ I = \dfrac{1}{4}\int {\dfrac{1}{y}dy} $
From the formulas of integration, we know $ \int {\dfrac{1}{y}dy} = \ln y + C' $ .
So, substituting this value in the above equation, we get:
$ I = \dfrac{1}{4}\int {\dfrac{1}{y}dy} $
$ \Rightarrow I = \dfrac{1}{4}\left( {\ln y + C'} \right) $
Opening the parenthesis:
$ \Rightarrow I = \dfrac{1}{4}\ln y + \dfrac{1}{4}C' $
$ \Rightarrow I = \dfrac{1}{4}\ln y + C $ where $ C,C' $ are constants.
Substituting the value of $ y $ from equation (2) in the above equation, and we get:
$ \Rightarrow I = \dfrac{1}{4}\ln \left( {4x + 5} \right) + C $
Which matches with the Option D.
Therefore, $ I = \int {\dfrac{{dx}}{{4x + 5}}} {\text{ = }}\dfrac{1}{4}\ln \left( {4x + 5} \right) + C $
Hence, Option D is correct.
So, the correct answer is “Option D”.
Note: Integration is nothing but the opposite of differentiation.
During differentiation, we know that the differentiation of a constant becomes zero, so the constant is removed, that’s why during integration a constant term is added to fulfil the requirement of that constant if removed.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

How many states of matter are there in total class 12 chemistry CBSE

