
How do you evaluate $\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} $?
Answer
547.2k+ views
Hint: We can use the fundamental theorem of calculus to evaluate a given term. First, use a property of definite integrals that can split the limits of the integral. Next, use the chain rule to get $x$ as the upper limit. The final step is to get everything back in terms of $x$.
Formula used: Fundamental Theorem of Calculus:
If $f\left( x \right)$ is continuous on $\left[ {a,b} \right]$ then,
$g\left( x \right) = \int_a^x {f\left( t \right)dt} $
is continuous on $\left[ {a,b} \right]$ and it is differentiable on $\left( {a,b} \right)$ and that,
$g'\left( x \right) = f\left( x \right)$
An alternate notation for the derivative portion of this is,
$\dfrac{d}{{dx}}\int_a^x {f\left( t \right)dt} = f\left( x \right)$
Complete step-by-step solution:
We have to find $\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} $.
This one needs a little work before we can use the Fundamental Theorem of Calculus. The first thing to notice is that the Fundamental Theorem of Calculus requires the lower limit to be a constant and the upper limit to be the variable. So, using a property of definite integrals we can split the limits of the integral we just need to remember to add in a minus sign after we do that. Doing this gives,
$\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = \dfrac{d}{{dx}}\int_0^{{x^4}} {\sqrt {{t^2} + t} dt} - \dfrac{d}{{dx}}\int_0^x {\sqrt {{t^2} + t} dt} $
The next thing to notice is that the Fundamental Theorem of Calculus also requires an $x$ in the upper limit of integration and we’ve got ${x^4}$. To do this derivative we’re going to need the following version of the chain rule.
$\dfrac{d}{{dx}}\left( {g\left( u \right)} \right) = \dfrac{d}{{du}}\left( {g\left( u \right)} \right)\dfrac{{du}}{{dx}}$, where $u = f\left( x \right)$
So, if we let $u = {x^4}$ we use the chain rule to get,
$\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = \dfrac{d}{{du}}\int_0^u {\sqrt {{t^2} + t} dt} \dfrac{{du}}{{dx}} - \dfrac{d}{{dx}}\int_0^x {\sqrt {{t^2} + t} dt} $
$ \Rightarrow \dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = \sqrt {{u^2} + u} \left( {4{x^3}} \right) - \sqrt {{x^2} + x} $
$ \Rightarrow \dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^3}\sqrt {{u^2} + u} - \sqrt {{x^2} + x} $
The final step is to get everything back in terms of $x$.
$\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^3}\sqrt {{{\left( {{x^4}} \right)}^2} + {x^4}} - \sqrt {{x^2} + x} $
$ \Rightarrow \dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^3} \times {x^2}\sqrt {{x^4} + 1} - \sqrt {{x^2} + x} $
$ \Rightarrow \dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^5}\sqrt {{x^4} + 1} - \sqrt {{x^2} + x} $
Hence, $\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^5}\sqrt {{x^4} + 1} - \sqrt {{x^2} + x} $.
Note: We can also solve the given integral using property
$\dfrac{d}{{dx}}\int_{v\left( x \right)}^{u\left( x \right)} {f\left( t \right)dt} = \dfrac{d}{{dx}}\left( {\int_{v\left( x \right)}^a {f\left( t \right)dt} + \int_a^{u\left( x \right)} {f\left( t \right)dt} } \right)$
Or $\dfrac{d}{{dx}}\int_{v\left( x \right)}^{u\left( x \right)} {f\left( t \right)dt} = - v'\left( x \right)f\left( {v\left( x \right)} \right) + u'\left( x \right)f\left( {u\left( x \right)} \right)$
Here, $f\left( t \right) = \sqrt {{t^2} + t} $, $u\left( x \right) = {x^4}$ and $v\left( x \right) = x$.
Use property $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}},n \ne - 1$ to find the differentiation of $u$ and $v$.
$u'\left( x \right) = 4{x^3}$ and $v'\left( x \right) = 1$
Now, determine $f\left( {u\left( x \right)} \right)$ and $f\left( {v\left( x \right)} \right)$.
$f\left( {u\left( x \right)} \right) = f\left( {{x^4}} \right)$
$ \Rightarrow f\left( {u\left( x \right)} \right) = \sqrt {{{\left( {{x^4}} \right)}^2} + {x^4}} $
$ \Rightarrow f\left( {u\left( x \right)} \right) = {x^2}\sqrt {{x^4} + 1} $
Now, $f\left( {v\left( x \right)} \right) = f\left( x \right)$
$ \Rightarrow f\left( {v\left( x \right)} \right) = \sqrt {{x^2} + x} $
Now, putting all these values in $\dfrac{d}{{dx}}\int_{v\left( x \right)}^{u\left( x \right)} {f\left( t \right)dt} = - v'\left( x \right)f\left( {v\left( x \right)} \right) + u'\left( x \right)f\left( {u\left( x \right)} \right)$.
$\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = - \sqrt {{x^2} + x} + 4{x^3} \times {x^2}\sqrt {{x^4} + 1} $
$ \Rightarrow \dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^5}\sqrt {{x^4} + 1} - \sqrt {{x^2} + x} $
Hence, $\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^5}\sqrt {{x^4} + 1} - \sqrt {{x^2} + x} $.
Formula used: Fundamental Theorem of Calculus:
If $f\left( x \right)$ is continuous on $\left[ {a,b} \right]$ then,
$g\left( x \right) = \int_a^x {f\left( t \right)dt} $
is continuous on $\left[ {a,b} \right]$ and it is differentiable on $\left( {a,b} \right)$ and that,
$g'\left( x \right) = f\left( x \right)$
An alternate notation for the derivative portion of this is,
$\dfrac{d}{{dx}}\int_a^x {f\left( t \right)dt} = f\left( x \right)$
Complete step-by-step solution:
We have to find $\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} $.
This one needs a little work before we can use the Fundamental Theorem of Calculus. The first thing to notice is that the Fundamental Theorem of Calculus requires the lower limit to be a constant and the upper limit to be the variable. So, using a property of definite integrals we can split the limits of the integral we just need to remember to add in a minus sign after we do that. Doing this gives,
$\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = \dfrac{d}{{dx}}\int_0^{{x^4}} {\sqrt {{t^2} + t} dt} - \dfrac{d}{{dx}}\int_0^x {\sqrt {{t^2} + t} dt} $
The next thing to notice is that the Fundamental Theorem of Calculus also requires an $x$ in the upper limit of integration and we’ve got ${x^4}$. To do this derivative we’re going to need the following version of the chain rule.
$\dfrac{d}{{dx}}\left( {g\left( u \right)} \right) = \dfrac{d}{{du}}\left( {g\left( u \right)} \right)\dfrac{{du}}{{dx}}$, where $u = f\left( x \right)$
So, if we let $u = {x^4}$ we use the chain rule to get,
$\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = \dfrac{d}{{du}}\int_0^u {\sqrt {{t^2} + t} dt} \dfrac{{du}}{{dx}} - \dfrac{d}{{dx}}\int_0^x {\sqrt {{t^2} + t} dt} $
$ \Rightarrow \dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = \sqrt {{u^2} + u} \left( {4{x^3}} \right) - \sqrt {{x^2} + x} $
$ \Rightarrow \dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^3}\sqrt {{u^2} + u} - \sqrt {{x^2} + x} $
The final step is to get everything back in terms of $x$.
$\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^3}\sqrt {{{\left( {{x^4}} \right)}^2} + {x^4}} - \sqrt {{x^2} + x} $
$ \Rightarrow \dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^3} \times {x^2}\sqrt {{x^4} + 1} - \sqrt {{x^2} + x} $
$ \Rightarrow \dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^5}\sqrt {{x^4} + 1} - \sqrt {{x^2} + x} $
Hence, $\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^5}\sqrt {{x^4} + 1} - \sqrt {{x^2} + x} $.
Note: We can also solve the given integral using property
$\dfrac{d}{{dx}}\int_{v\left( x \right)}^{u\left( x \right)} {f\left( t \right)dt} = \dfrac{d}{{dx}}\left( {\int_{v\left( x \right)}^a {f\left( t \right)dt} + \int_a^{u\left( x \right)} {f\left( t \right)dt} } \right)$
Or $\dfrac{d}{{dx}}\int_{v\left( x \right)}^{u\left( x \right)} {f\left( t \right)dt} = - v'\left( x \right)f\left( {v\left( x \right)} \right) + u'\left( x \right)f\left( {u\left( x \right)} \right)$
Here, $f\left( t \right) = \sqrt {{t^2} + t} $, $u\left( x \right) = {x^4}$ and $v\left( x \right) = x$.
Use property $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}},n \ne - 1$ to find the differentiation of $u$ and $v$.
$u'\left( x \right) = 4{x^3}$ and $v'\left( x \right) = 1$
Now, determine $f\left( {u\left( x \right)} \right)$ and $f\left( {v\left( x \right)} \right)$.
$f\left( {u\left( x \right)} \right) = f\left( {{x^4}} \right)$
$ \Rightarrow f\left( {u\left( x \right)} \right) = \sqrt {{{\left( {{x^4}} \right)}^2} + {x^4}} $
$ \Rightarrow f\left( {u\left( x \right)} \right) = {x^2}\sqrt {{x^4} + 1} $
Now, $f\left( {v\left( x \right)} \right) = f\left( x \right)$
$ \Rightarrow f\left( {v\left( x \right)} \right) = \sqrt {{x^2} + x} $
Now, putting all these values in $\dfrac{d}{{dx}}\int_{v\left( x \right)}^{u\left( x \right)} {f\left( t \right)dt} = - v'\left( x \right)f\left( {v\left( x \right)} \right) + u'\left( x \right)f\left( {u\left( x \right)} \right)$.
$\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = - \sqrt {{x^2} + x} + 4{x^3} \times {x^2}\sqrt {{x^4} + 1} $
$ \Rightarrow \dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^5}\sqrt {{x^4} + 1} - \sqrt {{x^2} + x} $
Hence, $\dfrac{d}{{dx}}\int_x^{{x^4}} {\sqrt {{t^2} + t} dt} = 4{x^5}\sqrt {{x^4} + 1} - \sqrt {{x^2} + x} $.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

