
Evaluate: $\dfrac{{3\cos {{53}^o}{\text{cosec}}{{37}^o}}}{{\left( {{{\cos }^2}{{29}^o} + {{\cos }^2}{{61}^o}} \right)}} - 3{\tan ^2}{45^o}$
$\left( a \right)$ 1
$\left( b \right)$ 3
$\left( c \right)$ 6
$\left( d \right)$ 0
Answer
596.1k+ views
Hint: In this particular question use the concept that cos (90 – x) = sin x so by this property first simplify the given trigonometric equation then again use the basic trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$ so use these concepts to reach the solution of the question.
Complete step by step answer:
Given trigonometric equation is $\dfrac{{3\cos {{53}^o}{\text{cosec}}{{37}^o}}}{{\left( {{{\cos }^2}{{29}^o} + {{\cos }^2}{{61}^o}} \right)}} - 3{\tan ^2}{45^o}$
The above equation is also written as
$ \Rightarrow \dfrac{{3\cos \left( {{{90}^o} - {{37}^o}} \right){\text{cosec}}{{37}^o}}}{{\left( {{{\cos }^2}\left( {{{90}^o} - {{61}^o}} \right) + {{\cos }^2}{{61}^o}} \right)}} - 3{\tan ^2}{45^o}$
Now as we know that cos (90 – x) = sin x, so use this property in the above equation we have,
$ \Rightarrow \dfrac{{3\sin {{37}^o}{\text{cosec}}{{37}^o}}}{{\left( {{{\sin }^2}{{61}^o} + {{\cos }^2}{{61}^o}} \right)}} - 3{\tan ^2}{45^o}$
Now as we know that ${\sin ^2}x + {\cos ^2}x = 1$ so use this property in the above equation we have,
$ \Rightarrow \left( {{{\sin }^2}{{61}^o} + {{\cos }^2}{{61}^o}} \right) = 1$
$ \Rightarrow \dfrac{{3\sin {{37}^o}{\text{cosec}}{{37}^o}}}{{\left( 1 \right)}} - 3{\tan ^2}{45^o}$
$ \Rightarrow 3\sin {37^o}{\text{cosec}}{37^o} - 3{\tan ^2}{45^o}$
Now as we know that sin x = (1/cosec x) so use this property in the above equation we have,
$ \Rightarrow 3\dfrac{{{\text{cosec}}{{37}^o}}}{{{\text{cosec}}{{37}^o}}} - 3{\tan ^2}{45^o}$
Now cancel out the common terms from numerator and denominator we have,
$ \Rightarrow 3 - 3{\tan ^2}{45^o}$
Now we also know that the value of tan 45 = 1, so use this value in the above equation we have,
$ \Rightarrow 3 - 3{\left( 1 \right)^2} = 3 - 3 = 0$
So the value of the given trigonometric equation is 0.
$ \Rightarrow \dfrac{{3\cos {{53}^o}{\text{cosec}}{{37}^o}}}{{\left( {{{\cos }^2}{{29}^o} + {{\cos }^2}{{61}^o}} \right)}} - 3{\tan ^2}{45^o} = 0$
So this is the required answer.
Hence option (D) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic trigonometric properties which are stated above then first simplify the given equation using these properties as above, then using the value of standard tan angle i.e. tan 45 = 1, and simplify we will get the required answer.
Complete step by step answer:
Given trigonometric equation is $\dfrac{{3\cos {{53}^o}{\text{cosec}}{{37}^o}}}{{\left( {{{\cos }^2}{{29}^o} + {{\cos }^2}{{61}^o}} \right)}} - 3{\tan ^2}{45^o}$
The above equation is also written as
$ \Rightarrow \dfrac{{3\cos \left( {{{90}^o} - {{37}^o}} \right){\text{cosec}}{{37}^o}}}{{\left( {{{\cos }^2}\left( {{{90}^o} - {{61}^o}} \right) + {{\cos }^2}{{61}^o}} \right)}} - 3{\tan ^2}{45^o}$
Now as we know that cos (90 – x) = sin x, so use this property in the above equation we have,
$ \Rightarrow \dfrac{{3\sin {{37}^o}{\text{cosec}}{{37}^o}}}{{\left( {{{\sin }^2}{{61}^o} + {{\cos }^2}{{61}^o}} \right)}} - 3{\tan ^2}{45^o}$
Now as we know that ${\sin ^2}x + {\cos ^2}x = 1$ so use this property in the above equation we have,
$ \Rightarrow \left( {{{\sin }^2}{{61}^o} + {{\cos }^2}{{61}^o}} \right) = 1$
$ \Rightarrow \dfrac{{3\sin {{37}^o}{\text{cosec}}{{37}^o}}}{{\left( 1 \right)}} - 3{\tan ^2}{45^o}$
$ \Rightarrow 3\sin {37^o}{\text{cosec}}{37^o} - 3{\tan ^2}{45^o}$
Now as we know that sin x = (1/cosec x) so use this property in the above equation we have,
$ \Rightarrow 3\dfrac{{{\text{cosec}}{{37}^o}}}{{{\text{cosec}}{{37}^o}}} - 3{\tan ^2}{45^o}$
Now cancel out the common terms from numerator and denominator we have,
$ \Rightarrow 3 - 3{\tan ^2}{45^o}$
Now we also know that the value of tan 45 = 1, so use this value in the above equation we have,
$ \Rightarrow 3 - 3{\left( 1 \right)^2} = 3 - 3 = 0$
So the value of the given trigonometric equation is 0.
$ \Rightarrow \dfrac{{3\cos {{53}^o}{\text{cosec}}{{37}^o}}}{{\left( {{{\cos }^2}{{29}^o} + {{\cos }^2}{{61}^o}} \right)}} - 3{\tan ^2}{45^o} = 0$
So this is the required answer.
Hence option (D) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic trigonometric properties which are stated above then first simplify the given equation using these properties as above, then using the value of standard tan angle i.e. tan 45 = 1, and simplify we will get the required answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

